一般来说,使用线程有两种模式, 一种是创建线程要执行的函数, 把这个函数传递进Thread对象里,让它来执行. 另一种是直接从Thread继承,创建一个新的class,把线程执行的代码放到这个新的class里。
实现多线程网页爬虫,采用了多线程和锁机制,实现了广度优先算法的网页爬虫。
先给大家简单介绍下我的实现思路:
对于一个网络爬虫,如果要按广度遍历的方式下载,它是这样的:
1.从给定的入口网址把第一个网页下载下来
2.从第一个网页中提取出所有新的网页地址,放入下载列表中
3.按下载列表中的地址,下载所有新的网页
4.从所有新的网页中找出没有下载过的网页地址,更新下载列表
5.重复3、4两步,直到更新后的下载列表为空表时停止
python代码如下:
#!/usr/bin/env python #coding=utf-8 import threading import urllib import re import time g_mutex=threading.Condition() g_pages=[] #从中解析所有url链接 g_queueURL=[] #等待爬取的url链接列表 g_existURL=[] #已经爬取过的url链接列表 g_failedURL=[] #下载失败的url链接列表 g_totalcount=0 #下载过的页面数 class Crawler: def __init__(self,crawlername,url,threadnum): self.crawlername=crawlername self.url=url self.threadnum=threadnum self.threadpool=[] self.logfile=file("log.txt",'w') def craw(self): global g_queueURL g_queueURL.append(url) depth=0 print self.crawlername+" 启动..." while(len(g_queueURL)!=0): depth+=1 print 'Searching depth ',depth,'...\n\n' self.logfile.write("URL:"+g_queueURL[0]+"........") self.downloadAll() self.updateQueueURL() content='\n>Depth '+str(depth)+':\n' self.logfile.write(content) i=0 while i<len(g_queueURL): content=str(g_totalcount+i)+'->'+g_queueURL[i]+'\n' self.logfile.write(content) i+=1 def downloadAll(self): global g_queueURL global g_totalcount i=0 while i<len(g_queueURL): j=0 while j<self.threadnum and i+j < len(g_queueURL): g_totalcount+=1 threadresult=self.download(g_queueURL[i+j],str(g_totalcount)+'.html',j) if threadresult!=None: print 'Thread started:',i+j,'--File number =',g_totalcount j+=1 i+=j for thread in self.threadpool: thread.join(30) threadpool=[] g_queueURL=[] def download(self,url,filename,tid): crawthread=CrawlerThread(url,filename,tid) self.threadpool.append(crawthread) crawthread.start() def updateQueueURL(self): global g_queueURL global g_existURL newUrlList=[] for content in g_pages: newUrlList+=self.getUrl(content) g_queueURL=list(set(newUrlList)-set(g_existURL)) def getUrl(self,content): reg=r'"(http://.+"' regob=re.compile(reg,re.DOTALL) urllist=regob.findall(content) return urllist class CrawlerThread(threading.Thread): def __init__(self,url,filename,tid): threading.Thread.__init__(self) self.url=url self.filename=filename self.tid=tid def run(self): global g_mutex global g_failedURL global g_queueURL try: page=urllib.urlopen(self.url) html=page.read() fout=file(self.filename,'w') fout.write(html) fout.close() except Exception,e: g_mutex.acquire() g_existURL.append(self.url) g_failedURL.append(self.url) g_mutex.release() print 'Failed downloading and saving',self.url print e return None g_mutex.acquire() g_pages.append(html) g_existURL.append(self.url) g_mutex.release() if __name__=="__main__": url=raw_input("请输入url入口:\n") threadnum=int(raw_input("设置线程数:")) crawlername="小小爬虫" crawler=Crawler(crawlername,url,threadnum) crawler.craw()
以上代码就是给大家分享的基python实现多线程网页爬虫,希望大家喜欢。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“基python实现多线程网页爬虫”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新动态
2025年01月11日
2025年01月11日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]