本文提供了三种不同的方式在Python(IPython Notebook)中调用ggplot。
在大数据时代,数据可视化是一个非常热门的话题。各个BI的厂商无不在数据可视化领域里投入大量的精力。Tableau凭借其强大的数据可视化的功能成为硅谷炙手可热的上市公司。Tableau的数据可视化的产品,其理论基础其实是《The Grammar of Graphic》,该书提出了对信息可视化的图表的语法抽象体系,数据的探索和分析可以由图像的语法来驱动,而非有固定的图表类型来驱动,使得数据的探索过程变得友好而有趣。
然而对于The Grammar of Graphic的理论的实践,并非Tableau独占,ggplot作为R语言上得一个图形库,其理论基础也是这本书。(注,笔者曾就职的某BI巨头,主要职责也是数据可视化,我们曾经和加拿大团队研发过类似的产品,基于HTML5和D3,可惜由于种种原因未能推向市场)
现在越来越多的人开始使用python来做数据分析,IPython Notebook尤其令人喜爱,它的实时交互把脚本语言的优势发挥到极致。那么怎样才能在IPython Notebook中使用ggplot呢?我这里跟大家分享三种不同的方式供大家选择。
RPy2
第一种方式是使用rpy2, rpy2是对rpy的改写和重新设计,旨在提供Python用户在python中使用R的API。
rpy2提供了对R语言的对象和方法的基本封装,当然也包括可视化的图库这一块。
下面就是一段运行ggplot的R程序使用rpy2在python中运行的例子:
from rpy2 import robjects from rpy2.robjects import Formula, Environment from rpy2.robjects.vectors import IntVector, FloatVector from rpy2.robjects.lib import grid from rpy2.robjects.packages import importr, data import rpy2.robjects.lib.ggplot2 as ggplot2 # The R 'print' function rprint = robjects.globalenv.get("print") stats = importr('stats') grdevices = importr('grDevices') base = importr('base') datasets = importr('datasets') mtcars = data(datasets).fetch('mtcars')['mtcars'] pp = ggplot2.ggplot(mtcars) + ggplot2.aes_string(x='wt', y='mpg', col='factor(cyl)') + ggplot2.geom_point() + ggplot2.geom_smooth(ggplot2.aes_string(group = 'cyl'), method = 'lm') pp.plot()
以上程序在IPython Notebook中运行会有缺陷,会弹出一个新的窗口显示图,而且该python进程会阻塞在那里。我们希望图表能内嵌在IPython Notebook的页面中,为了解决该问题,我们引入如下代码:
%matplotlib inline import uuid from rpy2.robjects.packages import importr from IPython.core.display import Image grdevices = importr('grDevices') def ggplot_notebook(gg, width = 800, height = 600): fn = '{uuid}.png'.format(uuid = uuid.uuid4()) grdevices.png(fn, width = width, height = height) gg.plot() grdevices.dev_off() return Image(filename=fn)
运行上述代码后,我们把ggplot的调用pp.plot()改为调用ggplot_notebook(pp, height=300)就能成功嵌入显示ggplot的结果。
RMagic
另一种方式是使用rmagic,rmagicy实际上依赖于rpy2。它的使用方式更像是直接在使用R
%load_ext rmagic library(ggplot2) dat <- data.frame(x = rnorm(10), y = rnorm(10), lab = sample(c('A', 'B'), 10, replace = TRUE)) x <- ggplot(dat, aes(x = x, y = y, color = lab)) + geom_point() print(x)
运行结果如下
ggplot for python
ggplot是一个python的库,基本上是对R语言ggplot的功能移植到Python上。
运行安装脚本
pip install ggplot
安装成功后,可以试一下这个例子
%matplotlib inline import pandas as pd from ggplot import * meat_lng = pd.melt(meat[['date', 'beef', 'pork', 'broilers']], id_vars='date') ggplot(aes(x='date', y='value', colour='variable'), data=meat_lng) + geom_point() + stat_smooth(color='red')
结果如下:
总结
本文提供了三种不同的方式在Python(IPython Notebook)中调用ggplot。
rpy2和Rmagic都是一种对R的桥接,所以都需要安装R。不同之处在于rpy2提供Python接口而Rmagic更接近R。
ggplot Python库是ggplot的Python移植,所以无需安装R,部署起来更为简单,但功能上也许和R的ggplot还有差距。
大家可以根据自己的需要做出选择。
Python
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]