本文实例讲述了Python素数检测的方法。分享给大家供大家参考。具体如下:
因子检测:
检测因子,时间复杂度O(n^(1/2))
def is_prime(n): if n < 2: return False for i in xrange(2, int(n**0.5+1)): if n%i == 0: return False return True
费马小定理:
如果n是一个素数,a是小于n的任意正整数,那么a的n次方与a模n同余
实现方法:
选择一个底数(例如2),对于大整数p,如果2^(p-1)与1不是模p同余数,则p一定不是素数;否则,则p很可能是一个素数
2**(n-1)%n 不是一个容易计算的数字
模运算规则:
(a^b) % p = ((a % p)^b) % p (a * b) % p = (a % p * b % p) % p
计算X^N(% P)
可以
如果N是偶数,那么X^N =(X*X)^[N/2];
如果N是奇数,那么X^N = X*X^(N-1) = X *(X*X)^[N/2];
def xn_mod_p(x, n, p): if n == 0: return 1 res = xn_mod_p((x*x)%p, n1, p) if n&1 != 0: res = (res*x)%p return res
也可以归纳为下面的算法 两个函数是一样的
def xn_mod_p2(x, n, p): res = 1 n_bin = bin(n)[2:] for i in range(0, len(n_bin)): res = res**2 % p if n_bin[i] == '1': res = res * x % p return res
有了模幂运算快速处理就可以实现费马检测
费马测试当给出否定结论时,是准确的,但是肯定结论有可能是错误的,对于大整数的效率很高,并且误判率随着整数的增大而降低
def fermat_test_prime(n): if n == 1: return False if n == 2: return True res = xn_mod_p(2, n-1, n) return res == 1
MILLER-RABIN检测
Miller-Rabin检测是目前应用比较广泛的一种
二次探测定理:如果p是一个素数,且0<x<p,则方程x^2%p=1的解为:x=1或x=p-1
费马小定理:a^(p-1) ≡ 1(mod p)
这就是Miller-Rabin素性测试的方法。不断地提取指数n-1中的因子2,把n-1表示成d*2^r(其中d是一个奇数)。那么我们需要计算的东西就变成了a的d*2^r次方除以n的余数。于是,a^(d * 2^(r-1))要么等于1,要么等于n-1。如果a^(d * 2^(r-1))等于1,定理继续适用于a^(d * 2^(r-2)),这样不断开方开下去,直到对于某个i满足a^(d * 2^i) mod n = n-1或者最后指数中的2用完了得到的a^d mod n=1或n-1。这样,Fermat小定理加强为如下形式:
尽可能提取因子2,把n-1表示成d*2^r,如果n是一个素数,那么或者a^d mod n=1,或者存在某个i使得a^(d*2^i) mod n=n-1 ( 0<=i<r ) (注意i可以等于0,这就把a^d mod n=n-1的情况统一到后面去了)
定理:若n是素数,a是小于n的正整数,则n对以a为基的Miller测试,结果为真.
Miller测试进行k次,将合数当成素数处理的错误概率最多不会超过4^(-k)
def miller_rabin_witness(a, p): if p == 1: return False if p == 2: return True #p-1 = u*2^t 求解 u, t n = p - 1 t = int(math.floor(math.log(n, 2))) u = 1 while t > 0: u = n / 2**t if n % 2**t == 0 and u % 2 == 1: break t = t - 1 b1 = b2 = xn_mod_p2(a, u, p) for i in range(1, t + 1): b2 = b1**2 % p if b2 == 1 and b1 != 1 and b1 != (p - 1): return False b1 = b2 if b1 != 1: return False return True def prime_test_miller_rabin(p, k): while k > 0: a = randint(1, p - 1) if not miller_rabin_witness(a, p): return False k = k - 1 return True
希望本文所述对大家的Python程序设计有所帮助。
Python,素数检测
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]