本文实例讲述了动态规划之矩阵连乘问题Python实现方法。分享给大家供大家参考,具体如下:
给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2 ,…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
例如:
A1={30x35} ; A2={35x15} ;A3={15x5} ;A4={5x10} ;A5={10x20} ;A6={20x25} ;
结果为:((A1(A2A3))((A4A5)A6)) 最小的乘次为15125。
原问题为n个矩阵连乘,将原问题分解为子问题,即当n等于1,2,3.....时。
n==1时,单一矩阵,不需要计算。最小乘次为0
n==2时,根据n==1时的结果,遍历计算出每相邻两个矩阵的最小乘次
n==3时,根据n==1和n==2时的结果,此时已经求出每相邻1个、2个矩阵的最小乘次,遍历计算出该相邻三个矩阵的最小乘次
依次类推……
当n==n时,根据n==1、2、……n-1时的结果,此时已经求出每相邻1个、2个、3个……n-1个矩阵的最小乘次,由此求出n==n时的最小乘次
每当n增加1时,就利用已求出的子结构来求解此时的最优值。
数学描述如下:
设矩阵Ai的维数为Pi × Pi+1。
设A[i:j]为矩阵AiAi+1....Aj的连乘积,即从Ai到Aj的连乘积,其中,0 <= i <= j <= n-1
设m[i][j]为计算A[i:j]的最小乘次,所以原问题的最优值为m[0][n-1]。
当 i==j 时,单一矩阵,无需计算。m[i][i]=0,i=0,1,....n-1
当 i < j 时,利用最优子结构,计算m[i][j]。即寻找断开位置k(i <= k < j),使得m[i][k]+m[k+1][j]+Pi*Pk+1*Pj+1最小。
该算法的python实现:
# coding=gbk # 矩阵连乘问题 __author__ = 'ice' # row_num 每个矩阵的行数 class Matrix: def __init__(self, row_num=0, col_num=0, matrix=None): if matrix != None: self.row_num = len(matrix) self.col_num = len(matrix[0]) else: self.row_num = row_num self.col_num = col_num self.matrix = matrix def matrix_chain(matrixs): matrix_num = len(matrixs) count = [[0 for j in range(matrix_num)] for i in range(matrix_num)] flag = [[0 for j in range(matrix_num)] for i in range(matrix_num)] for interval in range(1, matrix_num + 1): for i in range(matrix_num - interval): j = i + interval count[i][j] = count[i][i] + count[i + 1][j] + matrixs[i].row_num * matrixs[i + 1].row_num * matrixs[j].col_num flag[i][j] = i for k in range(i + 1, j): temp = count[i][k] + count[k + 1][j] + matrixs[i].row_num * matrixs[k + 1].row_num * matrixs[j].col_num if temp < count[i][j]: count[i][j] = temp flag[i][j] = k traceback(0, matrix_num - 1, flag) return count[0][matrix_num - 1] def traceback(i, j, flag): if i == j: return if j - i > 1: print(str(i + 1) + '~' + str(j + 1), end=': ') print(str(i + 1) + ":" + str(flag[i][j] + 1), end=',') print(str(flag[i][j] + 2) + ":" + str(j + 1)) traceback(i, flag[i][j], flag) traceback(flag[i][j] + 1, j, flag) matrixs = [Matrix(30, 35), Matrix(35, 15), Matrix(15, 5), Matrix(5, 10), Matrix(10, 20), Matrix(20, 25)] result = matrix_chain(matrixs) print(result) # 1~6: 1:3,4:6 # 1~3: 1:1,2:3 # 4~6: 4:5,6:6 # 15125
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
动态规划,矩阵连乘,Python
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]