本文实例讲述了Python实现的随机森林算法。分享给大家供大家参考,具体如下:
随机森林是数据挖掘中非常常用的分类预测算法,以分类或回归的决策树为基分类器。算法的一些基本要点:
*对大小为m的数据集进行样本量同样为m的有放回抽样;
*对K个特征进行随机抽样,形成特征的子集,样本量的确定方法可以有平方根、自然对数等;
*每棵树完全生成,不进行剪枝;
*每个样本的预测结果由每棵树的预测投票生成(回归的时候,即各棵树的叶节点的平均)
著名的python机器学习包scikit learn的文档对此算法有比较详尽的介绍: http://scikit-learn.org/stable/modules/ensemble.html#random-forests
出于个人研究和测试的目的,基于经典的Kaggle 101泰坦尼克号乘客的数据集,建立模型并进行评估。比赛页面及相关数据集的下载:https://www.kaggle.com/c/titanic
泰坦尼克号的沉没,是历史上非常著名的海难。突然感到,自己面对的不再是冷冰冰的数据,而是用数据挖掘的方法,去研究具体的历史问题,也是饶有兴趣。言归正传,模型的主要的目标,是希望根据每个乘客的一系列特征,如性别、年龄、舱位、上船地点等,对其是否能生还进行预测,是非常典型的二分类预测问题。数据集的字段名及实例如下:
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked 1 0 3 Braund, Mr. Owen Harris male 22 1 0 A/5 21171 7.25 S 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38 1 0 PC 17599 71.2833 C85 C 3 1 3 Heikkinen, Miss. Laina female 26 0 0 STON/O2. 3101282 7.925 S 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 0 113803 53.1 C123 S 5 0 3 Allen, Mr. William Henry male 35 0 0 373450 8.05 S
值得说明的是,SibSp是指sister brother spouse,即某个乘客随行的兄弟姐妹、丈夫、妻子的人数,Parch指parents,children
下面给出整个数据处理及建模过程,基于ubuntu+python 3.4( anaconda科学计算环境已经集成一系列常用包,pandas numpy sklearn等,这里强烈推荐)
懒得切换输入法,写的时候主要的注释都是英文,中文的注释是后来补充的:-)
# -*- coding: utf-8 -*- """ @author: kim """ from model import *#载入基分类器的代码 #ETL:same procedure to training set and test set training=pd.read_csv('train.csv',index_col=0) test=pd.read_csv('test.csv',index_col=0) SexCode=pd.DataFrame([1,0],index=['female','male'],columns=['Sexcode']) #将性别转化为01 training=training.join(SexCode,how='left',on=training.Sex) training=training.drop(['Name','Ticket','Embarked','Cabin','Sex'],axis=1)#删去几个不参与建模的变量,包括姓名、船票号,船舱号 test=test.join(SexCode,how='left',on=test.Sex) test=test.drop(['Name','Ticket','Embarked','Cabin','Sex'],axis=1) print('ETL IS DONE!') #MODEL FITTING #===============PARAMETER AJUSTMENT============ min_leaf=1 min_dec_gini=0.0001 n_trees=5 n_fea=int(math.sqrt(len(training.columns)-1)) #============================================== ''''' BEST SCORE:0.83 min_leaf=30 min_dec_gini=0.001 n_trees=20 ''' #ESSEMBLE BY RANDOM FOREST FOREST={} tmp=list(training.columns) tmp.pop(tmp.index('Survived')) feaList=pd.Series(tmp) for t in range(n_trees): # fea=[] feasample=feaList.sample(n=n_fea,replace=False)#select feature fea=feasample.tolist() fea.append('Survived') # feaNew=fea.append(target) subset=training.sample(n=len(training),replace=True)#generate the dataset with replacement subset=subset[fea] # print(str(t)+' Classifier built on feature:') # print(list(fea)) FOREST[t]=tree_grow(subset,'Survived',min_leaf,min_dec_gini) #save the tree #MODEL PREDICTION #====================== currentdata=training output='submission_rf_20151116_30_0.001_20' #====================== prediction={} for r in currentdata.index:#a row prediction_vote={1:0,0:0} row=currentdata.get(currentdata.index==r) for n in range(n_trees): tree_dict=FOREST[n] #a tree p=model_prediction(tree_dict,row) prediction_vote[p]+=1 vote=pd.Series(prediction_vote) prediction[r]=list(vote.order(ascending=False).index)[0]#the vote result result=pd.Series(prediction,name='Survived_p') #del prediction_vote #del prediction #result.to_csv(output) t=training.join(result,how='left') accuracy=round(len(t[t['Survived']==t['Survived_p']])/len(t),5) print(accuracy)
上述是随机森林的代码,如上所述,随机森林是一系列决策树的组合,决策树每次分裂,用Gini系数衡量当前节点的“不纯净度”,如果按照某个特征的某个分裂点对数据集划分后,能够让数据集的Gini下降最多(显著地减少了数据集输出变量的不纯度),则选为当前最佳的分割特征及分割点。代码如下:
# -*- coding: utf-8 -*- """ @author: kim """ import pandas as pd import numpy as np #import sklearn as sk import math def tree_grow(dataframe,target,min_leaf,min_dec_gini): tree={} #renew a tree is_not_leaf=(len(dataframe)>min_leaf) if is_not_leaf: fea,sp,gd=best_split_col(dataframe,target) if gd>min_dec_gini: tree['fea']=fea tree['val']=sp # dataframe.drop(fea,axis=1) #1116 modified l,r=dataSplit(dataframe,fea,sp) l.drop(fea,axis=1) r.drop(fea,axis=1) tree['left']=tree_grow(l,target,min_leaf,min_dec_gini) tree['right']=tree_grow(r,target,min_leaf,min_dec_gini) else:#return a leaf return leaf(dataframe[target]) else: return leaf(dataframe[target]) return tree def leaf(class_lable): tmp={} for i in class_lable: if i in tmp: tmp[i]+=1 else: tmp[i]=1 s=pd.Series(tmp) s.sort(ascending=False) return s.index[0] def gini_cal(class_lable): p_1=sum(class_lable)/len(class_lable) p_0=1-p_1 gini=1-(pow(p_0,2)+pow(p_1,2)) return gini def dataSplit(dataframe,split_fea,split_val): left_node=dataframe[dataframe[split_fea]<=split_val] right_node=dataframe[dataframe[split_fea]>split_val] return left_node,right_node def best_split_col(dataframe,target_name): best_fea=''#modified 1116 best_split_point=0 col_list=list(dataframe.columns) col_list.remove(target_name) gini_0=gini_cal(dataframe[target_name]) n=len(dataframe) gini_dec=-99999999 for col in col_list: node=dataframe[[col,target_name]] unique=node.groupby(col).count().index for split_point in unique: #unique value left_node,right_node=dataSplit(node,col,split_point) if len(left_node)>0 and len(right_node)>0: gini_col=gini_cal(left_node[target_name])*(len(left_node)/n)+gini_cal(right_node[target_name])*(len(right_node)/n) if (gini_0-gini_col)>gini_dec: gini_dec=gini_0-gini_col#decrease of impurity best_fea=col best_split_point=split_point #print(col,split_point,gini_0-gini_col) return best_fea,best_split_point,gini_dec def model_prediction(model,row): #row is a df fea=model['fea'] val=model['val'] left=model['left'] right=model['right'] if row[fea].tolist()[0]<=val:#get the value branch=left else: branch=right if ('dict' in str( type(branch) )): prediction=model_prediction(branch,row) else: prediction=branch return prediction
实际上,上面的代码还有很大的效率提升的空间,数据集不是很大的情况下,如果选择一个较大的输入参数,例如生成100棵树,就会显著地变慢;同时,将预测结果提交至kaggle进行评测,发现在测试集上的正确率不是很高,比使用sklearn里面相应的包进行预测的正确率(0.77512)要稍低一点 :-( 如果要提升准确率,两个大方向: 构造新的特征;调整现有模型的参数。
这里是抛砖引玉,欢迎大家对我的建模思路和算法的实现方法提出修改意见。
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
Python,随机森林,算法
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]