python高级特性

1、集合的推导式

"font-size: medium; font-family: Simsun; white-space: normal; word-spacing: 0px; text-transform: none; font-weight: normal; color: rgb(0,0,0); font-style: normal; text-align: center; orphans: 2; widows: 2; letter-spacing: normal; text-indent: 0px; font-variant-ligatures: normal; font-variant-caps: normal; -webkit-text-stroke-width: 0px">python高级特性和高阶函数及使用详解

python高级特性和高阶函数及使用详解

python高级特性和高阶函数及使用详解

"text-align: center">python高级特性和高阶函数及使用详解

"text-align: center">python高级特性和高阶函数及使用详解

"text-align: center">python高级特性和高阶函数及使用详解

2、多函数模式

函数列表,python中一切皆对象。

# 处理字符串
str_lst = ['$1.123', ' $1123.454', '$899.12312']
def remove_space(str):
  """
  remove space
  """
  str_no_space = str.replace(' ', '')
  return str_no_space
def remove_dollar(str):
  """
  remove $
  """
  if '$' in str:
    return str.replace('$', '')
  else:
    return str
def clean_str_lst(str_lst, operations):
  """
    clean string list
  """
  result = []
  for item in str_lst:
    for op in operations:
      item = op(item)
    result.append(item)
  return result
clean_operations = [remove_space, remove_dollar]
result = clean_str_lst(str_lst, clean_operations)
print result

执行结果:['1.123', '1123.454', '899.12312']

3、匿名函数lambda

"text-align: center">python高级特性和高阶函数及使用详解

python高阶函数

1、函数式编程

"text-align: center">python高级特性和高阶函数及使用详解

python高级特性和高阶函数及使用详解

2、map/reduce函数

"text-align: center">python高级特性和高阶函数及使用详解

python高级特性和高阶函数及使用详解

"htmlcode">

lst = [a1, a2 ,a3, ......, an]
  reduce(func(x,y), lst) = func(func(func(a1, a2), a3), ......, an)

python高级特性和高阶函数及使用详解

3、filter函数

"text-align: center">python高级特性和高阶函数及使用详解

下面看下Python高级函数使用

map的使用:map(function, iterable, ...)

"htmlcode">

> def f(x):
...   return x + x
...
> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
> list(r)
[2, 4, 6, 8, 10, 12, 14, 16, 18]
# 提供了两个列表,对相同位置的列表数据进行相加
> map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
[3, 7, 11, 15, 19]

reduce的使用:reduce(function, iterable[, initializer])

"htmlcode">

> from functools import reduce
> def add(x, y):
...   return x + y
...
> reduce(add, [1, 3, 5, 7, 9])
25
> reduce(lambda x, y: x+y, [1,2,3,4,5]) # 使用 lambda 匿名函数
15
from functools import reduce
def add(x,y):
  return x + y
print (reduce(add, range(1, 101)))

filter的使用:filter(function, iterable)

"htmlcode">

def is_odd(n):
  return n % 2 == 1
list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]
def not_empty(s):
  return s and s.strip()
list(filter(not_empty, ['A', '', 'B', None, 'C', ' ']))
# 结果: ['A', 'B', 'C']

filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。

sorted的使用:sorted(iterable[, cmp[, key[, reverse]]])

Python内置的sorted()函数就可以对list进行排序:

>a = [5,7,6,3,4,1,2]
> b = sorted(a)    # 保留原列表
> a 
[5, 7, 6, 3, 4, 1, 2]
> b
[1, 2, 3, 4, 5, 6, 7]
此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:
> sorted([36, 5, -12, 9, -21], key=abs)
#key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序。对比原始的list和经过key=abs处理过的list:
#list = [36, 5, -12, 9, -21]
#keys = [36, 5, 12, 9, 21]
[5, 9, -12, -21, 36]
#字符串排序
> sorted(['bob', 'about', 'Zoo', 'Credit'])
['Credit', 'Zoo', 'about', 'bob']

默认情况下,对字符串排序,是按照ASCII的大小比较的,由于'Z' < 'a',结果,大写字母Z会排在小写字母a的前面。

要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True:

> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']

raw_input的使用:raw_input([prompt])

prompt: 可选,字符串,可作为一个提示语。

raw_input() 将所有输入作为字符串看待

>a = raw_input("input:")
input:123
> type(a)
<type 'str'>       # 字符串
> a = raw_input("input:")
input:runoob
> type(a)
<type 'str'>       # 字符串
>
input() 需要输入 python 表达式
>a = input("input:")
input:123         # 输入整数
> type(a)
<type 'int'>        # 整型
> a = input("input:")  
input:"runoob"      # 正确,字符串表达式
> type(a)
<type 'str'>       # 字符串
> a = input("input:")
input:runoob        # 报错,不是表达式
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<string>", line 1, in <module>
NameError: name 'runoob' is not defined
<type 'str'>

总结

以上所述是小编给大家介绍的python高级特性和高阶函数及使用详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!

标签:
python中的高阶函数,python高级特性

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“python高级特性和高阶函数及使用详解”
暂无“python高级特性和高阶函数及使用详解”评论...