层及索引levels,刚开始学习pandas的时候没有太多的操作关于groupby,仅仅是简单的count、sum、size等等,没有更深入的利用groupby后的数据进行处理。近来数据处理的时候有遇到这类问题花了一点时间,所以这里记录以及复习一下:(以下皆是个人实践后的理解)
我使用一个实例来讲解下面的问题:一张数据表中有三列(动物物种、物种品种、品种价格),选出每个物种从大到小品种的前两种,最后只需要品种和价格这两列。
以上这张表是我们后面需要处理的数据表 (物种 品种 价格)
levels:层及索引 (创建pandas类型时可以预先定义;使用groupby后也会生成)
我们看看levels什么样(根据df1物种分类,再根据df2品种排序后 如下图)
图中可以看出,根据groupby分类后的cat、dog便是level,以及后面的一列原始位置索引也是level
好了现在简单了解levels,我们该如何对它进行处理,如何完成上面的实例呢?(可能你拿到这样的层级数据,不会操作,不知道如何提取其中的信息)
代码及讲解如下:
首先导入pandas、numpy库,以及创建原始数据:
import pandas as pd import numpy as np df = pd.DataFrame({'df1':['cat','cat','dog','cat','dog','dog'],'df2':[2,3,4,1,3,1],'df3':[100,200,100,300,200,200]})
原始数据最上面那张图
下面我们根据物种来分类,并且使用apply调用sort_df2函数对品种进行排序:
def sort_df2(data): data = data.sort_values(by='df2',ascending=False) #df2:品种列 ascending:排序方式 return data group = df.groupby(df['df1']).apply(sort_df2) #groupby以及apply的结合使用
处理后数据,上面第二张图
print(group.index) #看看groupby后的行索引什么样
groupby后如上图,有层级标签(这里两列),labels标签(分类,位置)
这里我们需要的是第一层级标签的第一列(也就是cat、dog)
levels = group.index.levels[0] #取出第一级标签:
下面将是两层循环,完成从中选出(物种前两个品种以及它的价格),很简单的操作:
values = [] for i in levels: mid_group = group.loc[i] #选出i标签物种的所有品种 mid_group = mid_group.iloc[:2,:] #我们只取排序后的品种的前两种(要注意这里使用iloc,它与loc的区别) cnt = len(mid_group) #为了防止循环长度错误,所以我们还是需要计算长度,因为如果真正数据不足2条还是不报错 for j in range(cnt): #现在在每个物种cat、dog中操作 value = mid_group.iloc[j,:] #我们选出该物种的第j条所有信息df1、df2、df3 value_pro = (value['df2'],value['df3']) #然后只取df2、df3,将它们放到元组中 values.append(value_pro)
所有的操作完成了,我们看看结果:
print(values) #此时在列表中保存了上面提取的元组信息,我们可以使用pandas再次转换它们为DataFrame,也可以做其它操作
我觉得这个例子比较形象,但是还是有逻辑欠缺的地方,不过不重要,看懂了上面的例子,基本上就能了解和处理层级数据了。当然这里的数据简单,只是为了更好的理解,真正的处理数据时,可能会出现更为复杂的层级结构,这时需要能够更灵活的处理,如果你有更好的理解和建议,可以回复。
-------更新(增加对两层索引的操作)--------
在原来的基础上增加一列df4表示动物的大小特征
df = pd.DataFrame({'df1':['cat','cat','dog','cat','dog','dog'],'df2':[2,3,4,1,3,1],'df3':[100,200,100,300,200,200],'df4':['大','中','小','巨大','小','中']})
此时根据df1、df4两列来分类,再对两层的层级索引操作:
df_group = df.groupby(['df1','df4']).size()
分类后得到的是对应两个特征的动物数量,现在来取得其中的值:
print(df_group.index) h = df_group.loc[['cat','df4']] print(h)
先查看数据的index信息,从中我们可以看到两层索引对应的levels有两中,然后我们根据loc测试选出cat类的df4这一列(也可以填大、中、巨大选出一列)
这样就得到了cat种类的信息,当然也可以选出dog种类,那么如何得出(cat,巨大,1)这样的一一对应的数据呢?
df1_name = df_group.index.levels[0] #获得第一层的分类cat、dog for i in range(len(df1_name)): #循环遍历第一层 df_level = df_group.loc[[df1_name[i],'df4']] #这里是选出第一层的所有信息 df_level_ch = pd.DataFrame(df_level) #由于上面得到是Series我们需要将它转换为DataFrame才能更好的操作 for j in range(len(df_level_ch)): #开始对第二层进行遍历 a = df_level_ch.ix[j].name #由于是DataFrame所以可以取每一行的name值('cat','大') b = df_level_ch.values[j][0] #获取对应数量,由于是嵌套列表,所以我们逐层获取 print(a,b)
基本上是筛选出来了,还是很简单的。这只是其中的一个例子,如果遇到需要其他的操作,可以根据这个例子来随机变换。
这个方法虽然可以筛选,但是个人觉得数据量过大,就不是很好,暂时没有更好的方法,如果那位朋友有其他操作,可以分享一下。
以上这篇浅谈pandas用groupby后对层级索引levels的处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]