本文主要讲如何不依赖TenserFlow等高级API实现一个简单的神经网络来做分类,所有的代码都在下面;在构造的数据(通过程序构造)上做了验证,经过1个小时的训练分类的准确率可以达到97%。
完整的结构化代码见于:链接地址
先来说说原理
网络构造
上面是一个简单的三层网络;输入层包含节点X1 , X2;隐层包含H1,H2;输出层包含O1。
输入节点的数量要等于输入数据的变量数目。
隐层节点的数量通过经验来确定。
如果只是做分类,输出层一般一个节点就够了。
从输入到输出的过程
1.输入节点的输出等于输入,X1节点输入x1时,输出还是x1.
2. 隐层和输出层的输入I为上层输出的加权求和再加偏置,输出为f(I) , f为激活函数,可以取sigmoid。H1的输出为 sigmoid(w1x1 + w2x2 + b)
误差反向传播的过程
Python实现
构造测试数据
# -*- coding: utf-8 -*- import numpy as np from random import random as rdn ''' 说明:我们构造1000条数据,每条数据有三个属性(用a1 , a2 , a3表示) a1 离散型 取值 1 到 10 , 均匀分布 a2 离散型 取值 1 到 10 , 均匀分布 a3 连续型 取值 1 到 100 , 且符合正态分布 各属性之间独立。 共2个分类(0 , 1),属性值与类别之间的关系如下, 0 : a1 in [1 , 3] and a2 in [4 , 10] and a3 <= 50 1 : a1 in [1 , 3] and a2 in [4 , 10] and a3 > 50 0 : a1 in [1 , 3] and a2 in [1 , 3] and a3 > 30 1 : a1 in [1 , 3] and a2 in [1 , 3] and a3 <= 30 0 : a1 in [4 , 10] and a2 in [4 , 10] and a3 <= 50 1 : a1 in [4 , 10] and a2 in [4 , 10] and a3 > 50 0 : a1 in [4 , 10] and a2 in [1 , 3] and a3 > 30 1 : a1 in [4 , 10] and a2 in [1 , 3] and a3 <= 30 ''' def genData() : #为a3生成符合正态分布的数据 a3_data = np.random.randn(1000) * 30 + 50 data = [] for i in range(1000) : #生成a1 a1 = int(rdn()*10) + 1 if a1 > 10 : a1 = 10 #生成a2 a2 = int(rdn()*10) + 1 if a2 > 10 : a2 = 10 #取a3 a3 = a3_data[i] #计算这条数据对应的类别 c_id = 0 if a1 <= 3 and a2 >= 4 and a3 <= 50 : c_id = 0 elif a1 <= 3 and a2 >= 4 and a3 > 50 : c_id = 1 elif a1 <= 3 and a2 < 4 and a3 > 30 : c_id = 0 elif a1 <= 3 and a2 < 4 and a3 <= 30 : c_id = 1 elif a1 > 3 and a2 >= 4 and a3 <= 50 : c_id = 0 elif a1 > 3 and a2 >= 4 and a3 > 50 : c_id = 1 elif a1 > 3 and a2 < 4 and a3 > 30 : c_id = 0 elif a1 > 3 and a2 < 4 and a3 <= 30 : c_id = 1 else : print('error') #拼合成字串 str_line = str(i) + ',' + str(a1) + ',' + str(a2) + ',' + str(a3) + ',' + str(c_id) data.append(str_line) return '\n'.join(data)
激活函数
# -*- coding: utf-8 -*- """ Created on Sun Dec 2 14:49:31 2018 @author: congpeiqing """ import numpy as np #sigmoid函数的导数为 f(x)*(1-f(x)) def sigmoid(x) : return 1/(1 + np.exp(-x))
网络实现
# -*- coding: utf-8 -*- """ Created on Sun Dec 2 14:49:31 2018 @author: congpeiqing """ from activation_funcs import sigmoid from random import random class InputNode(object) : def __init__(self , idx) : self.idx = idx self.output = None def setInput(self , value) : self.output = value def getOutput(self) : return self.output def refreshParas(self , p1 , p2) : pass class Neurode(object) : def __init__(self , layer_name , idx , input_nodes , activation_func = None , powers = None , bias = None) : self.idx = idx self.layer_name = layer_name self.input_nodes = input_nodes if activation_func is not None : self.activation_func = activation_func else : #默认取 sigmoid self.activation_func = sigmoid if powers is not None : self.powers = powers else : self.powers = [random() for i in range(len(self.input_nodes))] if bias is not None : self.bias = bias else : self.bias = random() self.output = None def getOutput(self) : self.output = self.activation_func(sum(map(lambda x : x[0].getOutput()*x[1] , zip(self.input_nodes, self.powers))) + self.bias) return self.output def refreshParas(self , err , learn_rate) : err_add = self.output * (1 - self.output) * err for i in range(len(self.input_nodes)) : #调用子节点 self.input_nodes[i].refreshParas(self.powers[i] * err_add , learn_rate) #调节参数 power_delta = learn_rate * err_add * self.input_nodes[i].output self.powers[i] += power_delta bias_delta = learn_rate * err_add self.bias += bias_delta class SimpleBP(object) : def __init__(self , input_node_num , hidden_layer_node_num , trainning_data , test_data) : self.input_node_num = input_node_num self.input_nodes = [InputNode(i) for i in range(input_node_num)] self.hidden_layer_nodes = [Neurode('H' , i , self.input_nodes) for i in range(hidden_layer_node_num)] self.output_node = Neurode('O' , 0 , self.hidden_layer_nodes) self.trainning_data = trainning_data self.test_data = test_data #逐条训练 def trainByItem(self) : cnt = 0 while True : cnt += 1 learn_rate = 1.0/cnt sum_diff = 0.0 #对于每一条训练数据进行一次训练过程 for item in self.trainning_data : for i in range(self.input_node_num) : self.input_nodes[i].setInput(item[i]) item_output = item[-1] nn_output = self.output_node.getOutput() #print('nn_output:' , nn_output) diff = (item_output-nn_output) sum_diff += abs(diff) self.output_node.refreshParas(diff , learn_rate) #print('refreshedParas') #结束条件 print(round(sum_diff / len(self.trainning_data) , 4)) if sum_diff / len(self.trainning_data) < 0.1 : break def getAccuracy(self) : cnt = 0 for item in self.test_data : for i in range(self.input_node_num) : self.input_nodes[i].setInput(item[i]) item_output = item[-1] nn_output = self.output_node.getOutput() if (nn_output > 0.5 and item_output > 0.5) or (nn_output < 0.5 and item_output < 0.5) : cnt += 1 return cnt/(len(self.test_data) + 0.0)
主调流程
# -*- coding: utf-8 -*- """ Created on Sun Dec 2 14:49:31 2018 @author: congpeiqing """ import os from SimpleBP import SimpleBP from GenData import genData if not os.path.exists('data'): os.makedirs('data') #构造训练和测试数据 data_file = open('data/trainning_data.dat' , 'w') data_file.write(genData()) data_file.close() data_file = open('data/test_data.dat' , 'w') data_file.write(genData()) data_file.close() #文件格式:rec_id,attr1_value,attr2_value,attr3_value,class_id #读取和解析训练数据 trainning_data_file = open('data/trainning_data.dat') trainning_data = [] for line in trainning_data_file : line = line.strip() fld_list = line.split(',') trainning_data.append(tuple([float(field) for field in fld_list[1:]])) trainning_data_file.close() #读取和解析测试数据 test_data_file = open('data/test_data.dat') test_data = [] for line in test_data_file : line = line.strip() fld_list = line.split(',') test_data.append(tuple([float(field) for field in fld_list[1:]])) test_data_file.close() #构造一个二分类网络 输入节点3个,隐层节点10个,输出节点一个 simple_bp = SimpleBP(3 , 10 , trainning_data , test_data) #训练网络 simple_bp.trainByItem() #测试分类准确率 print('Accuracy : ' , simple_bp.getAccuracy()) #训练时长比较长,准确率可以达到97%
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“BP神经网络原理及Python实现代码”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
2024年11月26日
2024年11月26日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]