概述
语音识别是当前人工智能的比较热门的方向,技术也比较成熟,各大公司也相继推出了各自的语音助手机器人,如百度的小度机器人、阿里的天猫精灵等。语音识别算法当前主要是由RNN、LSTM、DNN-HMM等机器学习和深度学习技术做支撑。但训练这些模型的第一步就是将音频文件数据化,提取当中的语音特征。
MP3文件转化为WAV文件
录制音频文件的软件大多数都是以mp3格式输出的,但mp3格式文件对语音的压缩比例较重,因此首先利用ffmpeg将转化为wav原始文件有利于语音特征的提取。其转化代码如下:
from pydub import AudioSegment import pydub def MP32WAV(mp3_path,wav_path): """ 这是MP3文件转化成WAV文件的函数 :param mp3_path: MP3文件的地址 :param wav_path: WAV文件的地址 """ pydub.AudioSegment.converter = "D:\\ffmpeg\\bin\\ffmpeg.exe" MP3_File = AudioSegment.from_mp3(file=mp3_path) MP3_File.export(wav_path,format="wav")
读取WAV语音文件,对语音进行采样
利用wave库对语音文件进行采样。
代码如下:
import wave import json def Read_WAV(wav_path): """ 这是读取wav文件的函数,音频数据是单通道的。返回json :param wav_path: WAV文件的地址 """ wav_file = wave.open(wav_path,'r') numchannel = wav_file.getnchannels() # 声道数 samplewidth = wav_file.getsampwidth() # 量化位数 framerate = wav_file.getframerate() # 采样频率 numframes = wav_file.getnframes() # 采样点数 print("channel", numchannel) print("sample_width", samplewidth) print("framerate", framerate) print("numframes", numframes) Wav_Data = wav_file.readframes(numframes) Wav_Data = np.fromstring(Wav_Data,dtype=np.int16) Wav_Data = Wav_Data*1.0/(max(abs(Wav_Data))) #对数据进行归一化 # 生成音频数据,ndarray不能进行json化,必须转化为list,生成JSON dict = {"channel":numchannel, "samplewidth":samplewidth, "framerate":framerate, "numframes":numframes, "WaveData":list(Wav_Data)} return json.dumps(dict)
绘制声波折线图与频谱图
代码如下:
from matplotlib import pyplot as plt def DrawSpectrum(wav_data,framerate): """ 这是画音频的频谱函数 :param wav_data: 音频数据 :param framerate: 采样频率 """ Time = np.linspace(0,len(wav_data)/framerate*1.0,num=len(wav_data)) plt.figure(1) plt.plot(Time,wav_data) plt.grid(True) plt.show() plt.figure(2) Pxx, freqs, bins, im = plt.specgram(wav_data,NFFT=1024,Fs = 16000,noverlap=900) plt.show() print(Pxx) print(freqs) print(bins) print(im)
首先利用百度AI开发平台的语音合API生成的MP3文件进行上述过程的结果。
声波折线图
频谱图
全部代码
#!/usr/bin/python3 # -*- coding: utf-8 -*- # @Time : 2018/7/5 13:11 # @Author : DaiPuwei # @FileName: VoiceExtract.py # @Software: PyCharm # @E-mail :771830171@qq.com # @Blog :https://blog.csdn.net/qq_30091945 import numpy as np from pydub import AudioSegment import pydub import os import wave import json from matplotlib import pyplot as plt def MP32WAV(mp3_path,wav_path): """ 这是MP3文件转化成WAV文件的函数 :param mp3_path: MP3文件的地址 :param wav_path: WAV文件的地址 """ pydub.AudioSegment.converter = "D:\\ffmpeg\\bin\\ffmpeg.exe" #说明ffmpeg的地址 MP3_File = AudioSegment.from_mp3(file=mp3_path) MP3_File.export(wav_path,format="wav") def Read_WAV(wav_path): """ 这是读取wav文件的函数,音频数据是单通道的。返回json :param wav_path: WAV文件的地址 """ wav_file = wave.open(wav_path,'r') numchannel = wav_file.getnchannels() # 声道数 samplewidth = wav_file.getsampwidth() # 量化位数 framerate = wav_file.getframerate() # 采样频率 numframes = wav_file.getnframes() # 采样点数 print("channel", numchannel) print("sample_width", samplewidth) print("framerate", framerate) print("numframes", numframes) Wav_Data = wav_file.readframes(numframes) Wav_Data = np.fromstring(Wav_Data,dtype=np.int16) Wav_Data = Wav_Data*1.0/(max(abs(Wav_Data))) #对数据进行归一化 # 生成音频数据,ndarray不能进行json化,必须转化为list,生成JSON dict = {"channel":numchannel, "samplewidth":samplewidth, "framerate":framerate, "numframes":numframes, "WaveData":list(Wav_Data)} return json.dumps(dict) def DrawSpectrum(wav_data,framerate): """ 这是画音频的频谱函数 :param wav_data: 音频数据 :param framerate: 采样频率 """ Time = np.linspace(0,len(wav_data)/framerate*1.0,num=len(wav_data)) plt.figure(1) plt.plot(Time,wav_data) plt.grid(True) plt.show() plt.figure(2) Pxx, freqs, bins, im = plt.specgram(wav_data,NFFT=1024,Fs = 16000,noverlap=900) plt.show() print(Pxx) print(freqs) print(bins) print(im) def run_main(): """ 这是主函数 """ # MP3文件和WAV文件的地址 path1 = './MP3_File' path2 = "./WAV_File" paths = os.listdir(path1) mp3_paths = [] # 获取mp3文件的相对地址 for mp3_path in paths: mp3_paths.append(path1+"/"+mp3_path) print(mp3_paths) # 得到MP3文件对应的WAV文件的相对地址 wav_paths = [] for mp3_path in mp3_paths: wav_path = path2+"/"+mp3_path[1:].split('.')[0].split('/')[-1]+'.wav' wav_paths.append(wav_path) print(wav_paths) # 将MP3文件转化成WAV文件 for(mp3_path,wav_path) in zip(mp3_paths,wav_paths): MP32WAV(mp3_path,wav_path) for wav_path in wav_paths: Read_WAV(wav_path) # 开始对音频文件进行数据化 for wav_path in wav_paths: wav_json = Read_WAV(wav_path) print(wav_json) wav = json.loads(wav_json) wav_data = np.array(wav['WaveData']) framerate = int(wav['framerate']) DrawSpectrum(wav_data,framerate) if __name__ == '__main__': run_main()
以上这篇使用python实现语音文件的特征提取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
python,语音,特征提取
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“使用python实现语音文件的特征提取方法”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
2024年11月26日
2024年11月26日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]