1 预处理

(1)对上传的图片进行预处理成100*100大小

def prepicture(picname):
  img = Image.open('./media/pic/' + picname)
  new_img = img.resize((100, 100), Image.BILINEAR)
  new_img.save(os.path.join('./media/pic/', os.path.basename(picname)))

(2)将图片转化成数组

def read_image2(filename):
  img = Image.open('./media/pic/'+filename).convert('RGB')
  return np.array(img)

2 利用模型进行预测

def testcat(picname):
  # 预处理图片 变成100 x 100
  prepicture(picname)
  x_test = []

  x_test.append(read_image2(picname))

  x_test = np.array(x_test)

  x_test = x_test.astype('float32')
  x_test /= 255

  keras.backend.clear_session() #清理session反复识别注意
  model = Sequential()
  model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3)))
  model.add(Conv2D(32, (3, 3), activation='relu'))
  model.add(MaxPooling2D(pool_size=(2, 2)))
  model.add(Dropout(0.25))

  model.add(Conv2D(64, (3, 3), activation='relu'))
  model.add(Conv2D(64, (3, 3), activation='relu'))
  model.add(MaxPooling2D(pool_size=(2, 2)))
  model.add(Dropout(0.25))

  model.add(Flatten())
  model.add(Dense(256, activation='relu'))
  model.add(Dropout(0.5))
  model.add(Dense(4, activation='softmax'))

  sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
  model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])


  model.load_weights('./cat/cat_weights.h5')
  classes = model.predict_classes(x_test)[0]
  # target = ['布偶猫', '孟买猫', '暹罗猫', '英国短毛猫']
  # print(target[classes])
  return classes

3 与Django结合

在views中调用模型进行图片分类

def catinfo(request):
  if request.method == "POST":
    f1 = request.FILES['pic1']
    # 用于识别
    fname = '%s/pic/%s' % (settings.MEDIA_ROOT, f1.name)
    with open(fname, 'wb') as pic:
      for c in f1.chunks():
        pic.write(c)
    # 用于显示
    fname1 = './static/img/%s' % f1.name
    with open(fname1, 'wb') as pic:
      for c in f1.chunks():
        pic.write(c)

    num = testcat(f1.name)
    # 有的数据库id从1开始这样就会报错
    # 因此原本数据库中的id=0被系统改为id=4
    # 遇到这样的问题就加上
    # if(num == 0):
    #  num = 4 
    # 通过id获取猫的信息
    name = models.Catinfo.objects.get(id = num)
    return render(request, 'info.html', {'nameinfo': name.nameinfo, 'feature': name.feature, 'livemethod': name.livemethod, 'feednn': name.feednn, 'feedmethod': name.feedmethod, 'picname': f1.name})
  else:
    return HttpResponse("上传失败!")

以上这篇与Django结合利用模型对上传图片预测的实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Django,模型,上传图片

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?