有时候我们在fintune时发现pytorch把许多层都集合在一个sequential里,但是我们希望能把中间层的结果引出来做下一步操作,于是我自己琢磨了一个方法,以vgg为例,有点僵硬哈!

首先pytorch自带的vgg16模型的网络结构如下:

VGG(
 (features): Sequential(
 (0): Conv2d (3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (1): ReLU(inplace)
 (2): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (3): ReLU(inplace)
 (4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1))
 (5): Conv2d (64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (6): ReLU(inplace)
 (7): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (8): ReLU(inplace)
 (9): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1))
 (10): Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (11): ReLU(inplace)
 (12): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (13): ReLU(inplace)
 (14): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (15): ReLU(inplace)
 (16): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1))
 (17): Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (18): ReLU(inplace)
 (19): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (20): ReLU(inplace)
 (21): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (22): ReLU(inplace)
 (23): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1))
 (24): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (25): ReLU(inplace)
 (26): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (27): ReLU(inplace)
 (28): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (29): ReLU(inplace)
 (30): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1))
 )
 (classifier): Sequential(
 (0): Linear(in_features=25088, out_features=4096)
 (1): ReLU(inplace)
 (2): Dropout(p=0.5)
 (3): Linear(in_features=4096, out_features=4096)
 (4): ReLU(inplace)
 (5): Dropout(p=0.5)
 (6): Linear(in_features=4096, out_features=1000)
 )
)

我们需要fintune vgg16的features部分,并且我希望把3,8, 15, 22, 29这五个作为输出进一步操作。我的想法是自己写一个vgg网络,这个网络参数与pytorch的网络一致但是保证我们需要的层输出在sequential外。于是我写的网络如下:

class our_vgg(nn.Module):
 def __init__(self):
  super(our_vgg, self).__init__()
  self.conv1 = nn.Sequential(
   # conv1
   nn.Conv2d(3, 64, 3, padding=35),
   nn.ReLU(inplace=True),
   nn.Conv2d(64, 64, 3, padding=1),
   nn.ReLU(inplace=True),

  )
  self.conv2 = nn.Sequential(
   # conv2
   nn.MaxPool2d(2, stride=2, ceil_mode=True), # 1/2
   nn.Conv2d(64, 128, 3, padding=1),
   nn.ReLU(inplace=True),
   nn.Conv2d(128, 128, 3, padding=1),
   nn.ReLU(inplace=True),

  )
  self.conv3 = nn.Sequential(
   # conv3
   nn.MaxPool2d(2, stride=2, ceil_mode=True), # 1/4
   nn.Conv2d(128, 256, 3, padding=1),
   nn.ReLU(inplace=True),
   nn.Conv2d(256, 256, 3, padding=1),
   nn.ReLU(inplace=True),
   nn.Conv2d(256, 256, 3, padding=1),
   nn.ReLU(inplace=True),

  )
  self.conv4 = nn.Sequential(
   # conv4
   nn.MaxPool2d(2, stride=2, ceil_mode=True), # 1/8
   nn.Conv2d(256, 512, 3, padding=1),
   nn.ReLU(inplace=True),
   nn.Conv2d(512, 512, 3, padding=1),
   nn.ReLU(inplace=True),
   nn.Conv2d(512, 512, 3, padding=1),
   nn.ReLU(inplace=True),

  )
  self.conv5 = nn.Sequential(
   # conv5
   nn.MaxPool2d(2, stride=2, ceil_mode=True), # 1/16
   nn.Conv2d(512, 512, 3, padding=1),
   nn.ReLU(inplace=True),
   nn.Conv2d(512, 512, 3, padding=1),
   nn.ReLU(inplace=True),
   nn.Conv2d(512, 512, 3, padding=1),
   nn.ReLU(inplace=True),
  )


 def forward(self, x):

  conv1 = self.conv1(x)
  conv2 = self.conv2(conv1)
  conv3 = self.conv3(conv2)
  conv4 = self.conv4(conv3)
  conv5 = self.conv5(conv4)

  return conv5

接着就是copy weights了:

def convert_vgg(vgg16):#vgg16是pytorch自带的
 net = our_vgg()# 我写的vgg

 vgg_items = net.state_dict().items()
 vgg16_items = vgg16.items()

 pretrain_model = {}
 j = 0
 for k, v in net.state_dict().iteritems():#按顺序依次填入
  v = vgg16_items[j][1]
  k = vgg_items[j][0]
  pretrain_model[k] = v
  j += 1
 return pretrain_model


## net是我们最后使用的网络,也是我们想要放置weights的网络
net = net()

print ('load the weight from vgg')
pretrained_dict = torch.load('vgg16.pth')
pretrained_dict = convert_vgg(pretrained_dict)
model_dict = net.state_dict()
# 1. 把不属于我们需要的层剔除
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. 把参数存入已经存在的model_dict
model_dict.update(pretrained_dict) 
# 3. 加载更新后的model_dict
net.load_state_dict(model_dict)
print ('copy the weight sucessfully')

这样我就基本达成目标了,注意net也就是我们要使用的网络fintune部分需要和our_vgg一致。

以上这篇pytorch在fintune时将sequential中的层输出方法,以vgg为例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pytorch,fintune,sequential,vgg

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?