Numpy的简单用法,下面就一起来了解一下
import numpy as np
一、创建ndarray对象
列表转换成ndarray:
> a = [1,2,3,4,5] > np.array(a) array([1, 2, 3, 4, 5])
取随机浮点数
> np.random.rand(3, 4)
array([[ 0.16215336, 0.49847764, 0.36217369, 0.6678112 ],
[ 0.66729648, 0.86538771, 0.32621889, 0.07709784],
[ 0.05460976, 0.3446629 , 0.35589223, 0.3716221 ]])
取随机整数
> np.random.randint(1, 5, size=(3,4))
array([[2, 3, 1, 2],
[3, 4, 4, 4],
[4, 4, 4, 3]])
取零
> np.zeros((3,4))
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
取一
> np.ones((3,4))
array([[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]])
取空(最好别用,了解一下,版本不同返回值不一样)
> np.empty((3,4))
array([[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]])
取整数零或一
> np.ones((3,4),int)
array([[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]])
> np.zeros((3,4),int)
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])
仿range命令创建ndarray:
> np.arange(2,10,2) # 开始,结束,步长 array([2, 4, 6, 8])
二、ndarray属性的查看和操作:
看ndarray属性:
> a = [[1,2,3,4,5],[6,7,8,9,0]]
> b = np.array(a)
> b.ndim #维度个数(看几维)
2
> b.shape #维度大小(看具体长宽)
(5,2)
>b.dtype
dtype('int32')
ndarray创建时指定属性:
> np.array([1,2,3,4,5],dtype=np.float64)
array([ 1., 2., 3., 4., 5.])
> np.zeros((2,5),dtype=np.int32)
array([[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])
属性强转:
> a = np.array([1,2,3,4,5],dtype=np.float64) > a array([ 1., 2., 3., 4., 5.]) > a.astype(np.int32) array([1, 2, 3, 4, 5])
三、简单操作:
批量运算:
> a = np.array([1,2,3,4,5],dtype=np.int32) > a array([1, 2, 3, 4, 5]) > a + a array([ 2, 4, 6, 8, 10]) > a * a array([ 1, 4, 9, 16, 25]) > a - 2 array([-1, 0, 1, 2, 3]) > a / 2 array([ 0.5, 1. , 1.5, 2. , 2.5]) #等等
改变维度:
> a = np.array([[1,2,3,4,5],[6,7,8,9,0]],dtype=np.int32)
> a
array([[1, 2, 3, 4, 5],
[6, 7, 8, 9, 0]])
> a.reshape((5,2))
array([[1, 2],
[3, 4],
[5, 6],
[7, 8],
[9, 0]])
矩阵转换(和改变维度有本质区别,仔细):
> a = np.array([[1,2,3,4,5],[6,7,8,9,0]],dtype=np.int32)
> a
array([[1, 2, 3, 4, 5],
[6, 7, 8, 9, 0]])
> a.transpose()
array([[1, 6],
[2, 7],
[3, 8],
[4, 9],
[5, 0]])
打乱(只能打乱一维):
> a = np.array([[1,2],[3,4],[5,6],[7,8],[9,0]],dtype=np.int32)
> a
array([[1, 2],
[3, 4],
[5, 6],
[7, 8],
[9, 0]])
> np.random.shuffle(a)
> a
array([[9, 0],
[1, 2],
[7, 8],
[5, 6],
[3, 4]])
四、切片和索引:
一维数组(和普通列表一样):
> a = np.array(range(10)) > a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) > a[3] 3 > a[2:9:2] array([2, 4, 6, 8])
多维数组(也差不了多少):
> a = np.array([[1,2,3,4,5],[6,7,8,9,0],[11,12,13,14,15]],dtype=np.int32)
> a
array([[ 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 0],
[11, 12, 13, 14, 15]])
> a[:, 1:4]
array([[ 2, 3, 4],
[ 7, 8, 9],
[12, 13, 14]])
条件索引:
> a = np.array([[1,2,3,4,5],[6,7,8,9,0],[11,12,13,14,15]],dtype=np.int32)
> a
array([[ 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 0],
[11, 12, 13, 14, 15]])
> a > 5
array([[False, False, False, False, False],
[ True, True, True, True, False],
[ True, True, True, True, True]], dtype=bool)
> a[a>5]
array([ 6, 7, 8, 9, 11, 12, 13, 14, 15])
> a%3 == 0
Out[128]:
array([[False, False, True, False, False],
[ True, False, False, True, True],
[False, True, False, False, True]], dtype=bool)
> a[a%3 == 0]
array([ 3, 6, 9, 0, 12, 15])
五、函数(numpy核心知识点)
计算函数(都不想举例了,太简单。。):
np.ceil(): 向上最接近的整数,参数是 number 或 array
np.floor(): 向下最接近的整数,参数是 number 或 array
np.rint(): 四舍五入,参数是 number 或 array
np.isnan(): 判断元素是否为 NaN(Not a Number),参数是 number 或 array
np.multiply(): 元素相乘,参数是 number 或 array
np.divide(): 元素相除,参数是 number 或 array
np.abs():元素的绝对值,参数是 number 或 array
np.where(condition, x, y): 三元运算符,x if condition else y
> a = np.random.randn(3,4)
> a
array([[ 0.37091654, 0.53809133, -0.99434523, -1.21496837],
[ 0.00701986, 1.65776152, 0.41319601, 0.41356973],
[-0.32922342, 1.07773886, -0.27273258, 0.29474435]])
> np.ceil(a)
array([[ 1., 1., -0., -1.],
[ 1., 2., 1., 1.],
[-0., 2., -0., 1.]])
> np.where(a>0, 10, 0)
array([[10, 10, 0, 0],
[10, 10, 10, 10],
[ 0, 10, 0, 10]])
统计函数
np.mean():所有元素的平均值
np.sum():所有元素的和,参数是 number 或 array
np.max():所有元素的最大值
np.min():所有元素的最小值,参数是 number 或 array
np.std():所有元素的标准差
np.var():所有元素的方差,参数是 number 或 array
np.argmax():最大值的下标索引值,
np.argmin():最小值的下标索引值,参数是 number 或 array
np.cumsum():返回一个一维数组,每个元素都是之前所有元素的累加和
np.cumprod():返回一个一维数组,每个元素都是之前所有元素的累乘积,参数是 number 或 array
> a = np.arange(12).reshape(3,4).transpose()
> a
array([[ 0, 4, 8],
[ 1, 5, 9],
[ 2, 6, 10],
[ 3, 7, 11]])
> np.mean(a)
5.5
> np.sum(a)
66
> np.argmax(a)
11
> np.std(a)
3.4520525295346629
> np.cumsum(a)
array([ 0, 4, 12, 13, 18, 27, 29, 35, 45, 48, 55, 66], dtype=int32)
判断函数:
np.any(): 至少有一个元素满足指定条件,返回True
np.all(): 所有的元素满足指定条件,返回True
> a = np.random.randn(2,3)
> a
array([[-0.65750548, 2.24801371, -0.26593284],
[ 0.31447911, -1.0215645 , -0.4984958 ]])
> np.any(a>0)
True
> np.all(a>0)
False
去除重复:
np.unique(): 去重
> a = np.array([[1,2,3],[2,3,4]])
> a
array([[1, 2, 3],
[2, 3, 4]])
> np.unique(a)
array([1, 2, 3, 4])
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
标签:
Numpy,用法
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“Numpy的简单用法小结”评论...
更新动态
2025年10月27日
2025年10月27日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]