finetune分为全局finetune和局部finetune。首先介绍一下局部finetune步骤:
1.固定参数
for name, child in model.named_children(): for param in child.parameters(): param.requires_grad = False
后,只传入 需要反传的参数,否则会报错
filter(lambda param: param.requires_grad, model.parameters())
2.调低学习率,加快衰减
finetune是在预训练模型上进行微调,学习速率不能太大。
目前不清楚:学习速率降低的幅度可以更快一些。这样以来,在使用step的策略时,stepsize可以更小一些。
直接从原始数据训练的base_lr一般为0.01,微调要比0.01小,置为0.001
要比直接训练的小一些,直接训练的stepsize为100000,finetune的stepsize: 50000
3. 固定bn或取消dropout:
batchnorm会影响训练的效果,随着每个batch,追踪样本的均值和方差。对于固定的网络,bn应该使用全局的数值
def freeze_bn(self): for layer in self.modules(): if isinstance(layer, nn.BatchNorm2d): layer.eval()
训练时,model.train()会修改模式,freeze_zn()应该在这里后面
4.过滤参数
训练时,对于优化器,应该只传入需要改变的参数,否则会报错
filter(lambda p: p.requires_grad, model.parameters())
以上这篇Pytorch之finetune使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
Pytorch,finetune
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“Pytorch之finetune使用详解”评论...
更新动态
2024年11月25日
2024年11月25日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]