众所周知图像是由若干有意义的像素组成的,图像分割作为计算机视觉的基础,对具有现有目标和较精确边界的图像进行分割,实现在图像像素级别上的分类任务。

5行Python代码实现图像分割的步骤详解

图像分割可分为语义分割和实例分割两类,区别如下:

  • 语义分割:将图像中每个像素赋予一个类别标签,用不同的颜色来表示;
  • 实例分割:无需对每个像素进行标记,只需要找到感兴趣物体的边缘轮廓。

图像分割通常应用如下所示:

  • 专业检测:应用于专业场景的图像分析,比如在卫星图像中识别建筑、道路、森林,或在医学图像中定位病灶、测量面积等;
  • 智能交通:识别道路信息,包括车道标记、交通标志等。

本博客主要通过PixelLib模块帮助用户快速便捷实现图像分割。

5行Python代码实现图像分割的步骤详解

1、环境部署

在进行项目设计前,需要安装所需的第三方库文件:TensorFlow、Pillow、OpenCV-Python、scikit-image和PixelLib,指令如下所示:

pip install tensorflow
pip install pillow
pip install opencv-python
pip install scikit-image
pip install pixellib

2、语义分割

PixelLib使用Deeplabv3+框架实现语义分割,在pascalvoc数据集上训练的Xception模型用于语义分割。

第1步:导入PixelLib模块,代码如下所示:

import pixellib
from pixellib.semantic import semantic_segmentation

第2步:创建用于执行语义分割的类实例,代码如下所示:

segment_image = semantic_segmentation()

第3步:调用load_pascalvoc_model()函数加载在Pascal voc上训练的Xception模型,代码如下所示:

segment_image.load_pascalvoc_model("deeplabv3_xception_tf_dim_ordering_tf_kernels.h5")

第4步:调用segmentAsPascalvoc()函数对图像进行分割,并且分割采用pascalvoc的颜色格式进行。此函数有两个必选参数:

  • path_to_image:分割的目标图像的路径;
  • path_to_output_image:保存分割后输出图像的路径。

将路径替换为自己环境路径即可,代码如下所示:

segment_image.segmentAsPascalvoc("path_to_image", output_image_name = "path_to_output_image")

上传图像,语义分割后效果如下所示:

5行Python代码实现图像分割的步骤详解

也可以生成了带有分段叠加层的图像,只需要将segmentAsPascalvoc()函数的overlay属性设置为True,代码如下所示:

segment_image.segmentAsPascalvoc("sample1.jpg", output_image_name = "image_new.jpg", overlay = True)

分段叠加层效果如下所示:

5行Python代码实现图像分割的步骤详解

3、即时分割

PixelLib的实例分割基于MaskRCNN框架实现,也仅需5行Python代码实现。

第1步:导入PixelLib模块,代码如下所示:

import pixellib
from pixellib.instance import instance_segmentation

第2步:导入用于执行实例细分的类并创建该类的实例,代码如下所示:

segment_image = instance_segmentation()

第3步:调用load_model()函数加载Mask RCNN模型以执行实例分割的代码,代码如下所示:

segment_image.load_model("mask_rcnn_coco.h5")

第4步:调用segmentImage()函数对图像执行实例分割。此函数有两个必选参数:

  • path_to_image:模型要预测的图像的路径;
  • output_image_name:保存分割结果的路径。

将路径替换为自己环境路径即可,代码如下所示:

segment_image.segmentImage("path_to_image", output_image_name = "output_image_path")

上传图像,即时分割后效果如下所示:

5行Python代码实现图像分割的步骤详解

也可以生成分割蒙版边界框,只需要将show_bboxes()函数的overlay属性设置为True,代码如下所示:

segment_image.segmentImage("sample2.jpg", output_image_name = "image_new.jpg", show_bboxes = True)

生成分割蒙版边界框效果如下所示:

5行Python代码实现图像分割的步骤详解

标签:
Python,图像分割,Python,,分割

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“5行Python代码实现图像分割的步骤详解”
暂无“5行Python代码实现图像分割的步骤详解”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。