适用小白,大佬勿喷

个人配置:vs2013 ; opencv 3.0 ;

直接上效果图

使用opencv识别图像红色区域,并输出红色区域中心点坐标

注意:右下角的水印把中心点挡住了,要仔细看才能看到

下面是代码:

#include <iostream>
#include<opencv2\opencv.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#define PI 3.1415926
 
using namespace cv;
using namespace std;
 
void RGB2HSV(double red, double green, double blue, double& hue, double& saturation, double& intensity)
{
	 
	double r, g, b;
	double h, s, i;
 
	double sum;
	double minRGB, maxRGB;
	double theta;
 
	r = red / 255.0;
	g = green / 255.0;
	b = blue / 255.0;
 
	minRGB = ((r<g) "," << S << "," << V << endl;*/
		}
	}
	/*imshow("hsv", vec_rgb);*/
	return vec_rgb;
	
 
}
 
void O_x1y1(Mat in, double *x1, double *y1, double *x2, double *y2)
 
{
	Mat matSrc = in;
	/*Mat matSrc = imread("qwer9.png", 0);*/
 
	GaussianBlur(matSrc, matSrc, Size(5, 5), 0);//高斯滤波,除噪点
 
	vector<vector<Point> > contours;//contours的类型,双重的vector
 
	vector<Vec4i> hierarchy;//Vec4i是指每一个vector元素中有四个int型数据。
 
	//阈值
 
	threshold(matSrc, matSrc, 100, 255, THRESH_BINARY);//图像二值化
 
	//寻找轮廓,这里注意,findContours的输入参数要求是二值图像,二值图像的来源大致有两种,第一种用threshold,第二种用canny
 
	findContours(matSrc.clone(), contours, hierarchy, CV_RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0));
 
	/// 计算矩
 
	vector<Moments> mu(contours.size());
 
	for (int i = 0; i < contours.size(); i++)
 
	{
		mu[i] = moments(contours[i], false);
	}
 
	/// 计算矩中心:
 
	vector<Point2f> mc(contours.size());
 
	for (int i = 0; i < contours.size(); i++)
 
	{
		mc[i] = Point2f(mu[i].m10 / mu[i].m00, mu[i].m01 / mu[i].m00);
	}
 
	/// 绘制轮廓
 
	Mat drawing = Mat::zeros(matSrc.size(), CV_8UC1);
 
	for (int i = 0; i < contours.size(); i++)
 
	{
		Scalar color = Scalar(255);
 
		//drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point());//绘制轮廓函数
 
		circle(drawing, mc[i], 4, color, -1, 8, 0);
		
	}
	*x1 = mc[0].x;
	*y1 = mc[0].y;
	*x2 = mc[contours.size()-1].x;
	*y2 = mc[contours.size() - 1].y;
	
	imshow("outImage", drawing);
}
 
int main()
{
	
	double xx1, yy1, xx2, yy2;
	double x1, y1, x2, y2;
 
	Mat matSrc = imread("qwer4.png");
 
	Mat middle = picture_red(matSrc);
	O_x1y1(middle, &xx1, &yy1, &xx2, &yy2);
	x1 = xx1;
	y1 = yy1;
	x2 = xx2;
	y2 = yy2;
 
	imshow("原图", matSrc);
	imshow("red", picture_red(matSrc));
 
	cout << "红点:" << x1 << ", " << y1 << "; " << "红点1:" << x2 << ", " << y2 << endl;
	waitKey();
 
	return 0;
}

如有不足,望指点!

补充知识:opencv 识别网球 ,或者绿色的小球 输出重心坐标

我就废话不多说了,大家还是直接看代码吧!

void image_process(IplImage *image)
 {
 int iLowH =26; 
 int iHighH = 69; 
 int iLowS = 42;  
 int iHighS = 206;  
 int iLowV = 0; 
 int iHighV = 198;
  CvMemStorage* storage2 = cvCreateMemStorage();
  CvSeq* contour3 = NULL;
  CvMoments moments; 
  CvMat *region; 
  CvPoint pt1,pt2;
  double m00 = 0, m10, m01, mu20, mu11, mu02, inv_m00; 
  double a, b, c; 
  int xc, yc; 
 
  CvMemStorage* storage = cvCreateMemStorage();
 	CvSeq * circles=NULL;
 
  // Circle cir[6];
  CvPoint P0;
  CvPoint CenterPoint;
  // cvNamedWindow("win1"); 
	//cvShowImage("win1",image);
	//cvNamedWindow("image",CV_WINDOW_AUTOSIZE);//用于显示图像的窗口
	//cvNamedWindow("hsv",CV_WINDOW_AUTOSIZE);	
	//cvNamedWindow("saturation",CV_WINDOW_AUTOSIZE);
	//cvNamedWindow("value",CV_WINDOW_AUTOSIZE);
	//cvNamedWindow("pImg8u",1);
	IplImage *hsv=cvCreateImage(cvGetSize(image),8,3);//给hsv色系的图像申请空间
	IplImage *hue=cvCreateImage(cvGetSize(image),8,1); //色调
	IplImage *saturation=cvCreateImage(cvGetSize(image),8,1);//饱和度
	IplImage *value=cvCreateImage(cvGetSize(image),8,1);//亮度
	IplImage *imgThresholded=cvCreateImage(cvGetSize(hue),8,1); 
	cvNamedWindow("yuan",1);
	cvCvtColor(image,hsv,CV_BGR2HSV);//将RGB色系转为HSV色系
	cvShowImage("yuan",image);
	//cvShowImage("hsv",hsv);
	cvSplit(hsv, hue, 0, 0, 0 );//分离三个通道
	cvSplit(hsv, 0, saturation, 0, 0 );
	cvSplit(hsv, 0, 0, value, 0 );
	int value_1=0;
	 
	cvInRangeS(
	  hsv, 
	  cvScalar(iLowH, iLowS, iLowV), 
	  cvScalar(iHighH, iHighS, iHighV),
	  imgThresholded
	  ); 
	 cvNamedWindow("imgThresholded",1);
	 cvShowImage("imgThresholded",imgThresholded);
 
	 IplImage*pContourImg= cvCreateImage( cvGetSize(image), 8, 1 ); 
	cvCopy(imgThresholded,pContourImg);
	 cvNamedWindow("pContourImg",1);
	 cvShowImage("pContourImg",pContourImg);
	 IplImage* dst = cvCreateImage( cvGetSize(image), 8, 3 ); 
	CvMemStorage* storage3 = cvCreateMemStorage(0); 
	CvSeq* contour = 0; 
	// 提取轮廓 
  int contour_num = cvFindContours(pContourImg, storage3, &contour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE); 
  cvZero(dst);    // 清空数组 
  CvSeq *_contour = contour;  
  double maxarea = 100; 
  double minarea = 10; 
  int m = 0; 
  for( ; contour != 0; contour = contour->h_next )  
  {  
 
    double tmparea = fabs(cvContourArea(contour)); 
    if(tmparea < minarea)   
    {  
      cvSeqRemove(contour, 0); // 删除面积小于设定值的轮廓 
      continue; 
    }  
    CvRect aRect = cvBoundingRect( contour, 0 );  
    if ((aRect.width/aRect.height)<1)  
    {  
      cvSeqRemove(contour, 0); //删除宽高比例小于设定值的轮廓 
      continue; 
    }  
    if(tmparea > maxarea)  
    {  
      maxarea = tmparea; 
    }  
    m++; 
    // 创建一个色彩值 
  //  CvScalar color = CV_RGB( 0, 0, 255 ); 
 
   /*  max_level 绘制轮廓的最大等级。如果等级为0,绘制单独的轮廓。如果为1,绘制轮廓及在其后的相同的级别下轮廓 
    如果值为2,所有的轮廓。如果等级为2,绘制所有同级轮廓及所有低一级轮廓,诸此种种 
    如果值为负数,函数不绘制同级轮廓,但会升序绘制直到级别为abs(max_level)-1的子轮廓 */ 
   //  cvDrawContours(dst, contour, color, color, 0, 1, 8);  //绘制外部和内部的轮廓 
  }  
  contour = _contour; 
  int count = 0; double tmparea=0;
  for(; contour != 0; contour = contour->h_next) 
  {  
    count++; 
     tmparea = fabs(cvContourArea(contour)); 
    if (tmparea >= maxarea)  
    {  
      CvScalar color = CV_RGB( 0, 255, 0); 
      cvDrawContours(dst, contour, color, color, -1, 1, 8); 
			cout<<"222"<<endl;
			cout<<"面积为"<<tmparea<<endl;
			cout<<endl;
			CvRect aRect = cvBoundingRect( contour, 0 ); 
			//找重心
			{
				CvPoint2D32f center = cvPoint2D32f(0, 0);
				int countOfPoint = 0;
				for(int i = aRect.x; i < aRect.x + aRect.width; ++i){
					for(int j = aRect.y; j < aRect.y + aRect.height; ++j){
						if(*(image->imageData + image->widthStep * j + i) != 0){
							center.x += i;
							center.y += j;
							countOfPoint++;
						}
					}
				}
 
				center.x /= countOfPoint;
				center.y /= countOfPoint;
				cout<<"重心坐标为x:"<<center.x<<endl;
     		cout<<"重心坐标为y:"<<center.y<<endl;
				cvCircle(dst, cvPoint(center.x, center.y), 5, cvScalar(0, 255), 2);
			}
		}
 // //Threshold the image
 //  cvErode(imgThresholded,imgThresholded);
 //  cvErode(imgThresholded,imgThresholded);
	 //cvErode(imgThresholded,imgThresholded);
	 //cvErode(imgThresholded,imgThresholded);	  
	 //IplImage* pImg8u=cvCloneImage(imgThresholded);
	
	 //cvCanny(pImg8u, pImg8u,40, 50, 5);
	 //cvShowImage("pImg8u",pImg8u);
	 //circles=cvHoughCircles(pImg8u,storage,CV_HOUGH_GRADIENT,
		//2,  //最小分辨率,应当>=1
		//pImg8u->height/15,  //该参数是让算法能明显区分的两个不同圆之间的最小距离
		//80,  //用于Canny的边缘阀值上限,下限被置为上限的一半
		//65,  //累加器的阀值
		//25,   //最小圆半径 
		//50   //最大圆半径
		//);
 }
 
	cvShowImage( "contour", dst );
	}

以上这篇使用opencv识别图像红色区域,并输出红色区域中心点坐标就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
opencv,图像,红色区域,中心点,坐标

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?