一、根据条件在序列中筛选数据
- 假设有一个数字列表 data, 过滤列表中的负数
data = [1, 2, 3, 4, -5] # 使用列表推导式 result = [i for i in data if i >= 0] # 使用 fliter 过滤函数 result = filter(lambda x: x >= 0, data)
- 学生的数学分数以字典形式存储,筛选其中分数大于 80 分的同学
from random import randint d = {x: randint(50, 100) for x in range(1, 21)} r = {k: v for k, v in d.items() if v > 80}
二、对字典的键值对进行翻转
- 使用 zip() 函数
zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。
from random import randint, sample s1 = {x: randint(1, 4) for x in sample("abfcdrg", randint(1, 5))} d = {k: v for k, v in zip(s1.values(), s1.keys())}
三、统计序列中元素出现的频度
- 某随机序列中,找到出现次数最高的3个元素,它们出现的次数是多少
方法1:
# 可以使用字典来统计,以列表中的数据为键,以出现的次数为值 from random import randint # 构造随机序列 data = [randint(0, 20) for _ in range(30)] # 列表中出现数字出现的次数 d = dict.fromkeys(data, 0) for v in d: d[v] += 1
方法2:
# 直接使用 collections 模块下面的 Counter 对象 from collections import Counter from random import randint data = [randint(0, 20) for _ in range(30)] c2 = Counter(data) # 查询元素出现次数 c2[14] # 统计频度出现最高的3个数 c2.most_common(3)
- 对某英文文章单词进行统计,找到出现次数最高的单词以及出现的次数
import re from collections import Counter # 统计某个文章中英文单词的词频 with open("test.txt", "r", encoding="utf-8") as f: d = f.read() # 所有的单词列表 total = re.split("\W+", d) result = Counter(total) print(result.most_common(10))
四、根据字典中值的大小,对字典中的项进行排序
- 比如班级中学生的数学成绩以字典的形式存储,请按数学成绩从高到底进行排序
方法1:
# 利用 zip 将字典转化为元组,再用 sorted 进行排序 from random import randint data = {x: randint(60, 100) for x in "xyzfafs"} sorted(data) data = sorted(zip(data.values(), data.keys()))
方法2:
# 利用 sorted 函数的 key 参数 from random import randint data = {x: randint(60, 100) for x in "xyzfafs"} data.items() sorted(data.items(), key=lambda x: x[1])
五、在多个字典中找到公共键
- 实际场景:在足球联赛中,统计每轮比赛都有进球的球员
第一轮:{"C罗": 1, "苏亚雷斯":2, "托雷斯": 1..}
第二轮:{"内马尔": 1, "梅西":2, "姆巴佩": 3..}
第三轮:{"姆巴佩": 2, "C罗":2, "内马尔": 1..}
from random import randint, sample from functools import reduce # 模拟随机的进球球员和进球数 s1 = {x: randint(1, 4) for x in sample("abfcdrg", randint(1, 5))} s2 = {x: randint(1, 4) for x in sample("abfcdrg", randint(1, 5))} s3 = {x: randint(1, 4) for x in sample("abfcdrg", randint(1, 5))} # 首先获取字典的 keys,然后取每轮比赛 key 的交集。由于比赛轮次数是不定的,所以使用 map 来批量操作 # map(dict.keys, [s1, s2, s3]) # 然后一直累积取其交集,使用 reduce 函数 reduce(lambda x, y: x & y, map(dict.keys, [s1, s2, s3]))
以上就是Python 高效编程技巧分享的详细内容,更多关于Python 高效编程技巧的资料请关注其它相关文章!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]