递归( recursion)是一种神奇的编程技巧,可以大幅简化代码,使之看起来更加简洁。然而递归设计却非常抽象,不容易掌握。通常,我们都是自上而下的思考问题, 递归则是自下而上的解决问题——这就是递归看起来不够直观的原因。

和递归相关的概念里,线性递归/非线性递归、单向递归/非单向递归,是非常重要的,要想掌握递归技术,就必须要深入理解。关于递归的基本概念,有兴趣的读者,可以参考我的博客《Python 递归算法指归》。今天,仅就背包问题谈非单向递归函数如何返回全部结果。

背包问题的背后,是世界七大数学难题之一,多项式复杂程度的非确定性问题。作为程序员,可以将该问题大致上理解为组合优化的问题。背包问题通常被这样描述:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,如何选择,才能使得物品的总价格最高。如果加上不同的限制和条件,背包问题可以衍生出很多变种。比如,下面这道题看起来和背包问题相去甚远,实质上仍然是一个典型的背包问题。

在一款英雄对战游戏中,玩家拥有m件装备和n位英雄,他可以给每一位英雄分配0件或多件装备,而不同的英雄拥有不同数目的装备时将获得不同的攻击力。玩家如何分配这m件装备,可以使得n个英雄获得的攻击力的和最大?以玩家拥有5件装备和3位英雄为例,下表共有3行6列,对应着3位英雄分别拥有从0到5件装备时的攻击力。

0件 1件 2件 3件 4件 5件 英雄1 0 1 3 5 7 9 英雄2 0 1 1 3 3 7 英雄3 0 3 4 5 6 7

即使不熟悉背包问题,也不难找到解题思路:

  • 找出所有可能的装备分配方案
  • 计算每一个方案的攻击值
  • 选择攻击值最大的分配方案

1. 找出所有可能的装备分配方案

找出将m件装备分配给n位英雄的所有方案是解决问题的核心。这里,循环嵌套是行不通的,因为嵌套层数是输入变量。递归是我想到的可行的方法。

> def bag(m, n, series=list()):
    if n == 1:
      for i in range(m+1):
        print(series+[i])
    else:
      for i in range(m+1):
        bag(m-i, n-1, series+[i])
  
> bag(3,2) # 将3件装备分配给2位英雄的全部方案
[0, 0]
[0, 1]
[0, 2]
[0, 3]
[1, 0]
[1, 1]
[1, 2]
[2, 0]
[2, 1]
[3, 0]

递归函数bag,打印出了将3件装备分配给2位英雄的全部方案。显然,这不是一个单向递归,因为在同一级有多次递归调用,这意味着递归过程有多次从递归出口走出。对于非单向递归,是不能使用return返回结果的。那么,如何让递归函数返回全部方案呢?请看下面的例子。

> def bag(m, n, result, series=list()):
 if n == 1:
 for i in range(m+1):
  result.append(series+[i])
  #print(result[-1])
 else:
 for i in range(m+1):
  bag(m-i, n-1, result, series+[i])

  
> result = list()
> bag(5, 3, result) # 将5件装备分配给3位英雄,共有56种分配方案
> len(result)
56
> result
[[0, 0, 0], [0, 0, 1], [0, 0, 2], [0, 0, 3], [0, 0, 4], [0, 0, 5], 
[0, 1, 0], [0, 1, 1], [0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 0], 
[0, 2, 1], [0, 2, 2], [0, 2, 3], [0, 3, 0], [0, 3, 1], [0, 3, 2], 
[0, 4, 0], [0, 4, 1], [0, 5, 0], [1, 0, 0], [1, 0, 1], [1, 0, 2], 
[1, 0, 3], [1, 0, 4], [1, 1, 0], [1, 1, 1], [1, 1, 2], [1, 1, 3], 
[1, 2, 0], [1, 2, 1], [1, 2, 2], [1, 3, 0], [1, 3, 1], [1, 4, 0], 
[2, 0, 0], [2, 0, 1], [2, 0, 2], [2, 0, 3], [2, 1, 0], [2, 1, 1], 
[2, 1, 2], [2, 2, 0], [2, 2, 1], [2, 3, 0], [3, 0, 0], [3, 0, 1], 
[3, 0, 2], [3, 1, 0], [3, 1, 1], [3, 2, 0], [4, 0, 0], [4, 0, 1], 
[4, 1, 0], [5, 0, 0]]

上面的代码中,在调用递归函数之前,先创建一个全局的列表对象result,并作为参数传递给递归函数。递归调用结束后,全部的装备分配方案就保存在列表对象result中。

2. 计算每一个方案的攻击值

遍历56种分配方案,计算每一种方案的攻击力之和,保存到一个新的列表v中。p为3位英雄分别拥有从0到5件装备时的攻击力。

> p = [
 [0,1,3,5,7,9],
 [0,1,1,3,3,7],
 [0,3,4,5,6,7]
]
> v = list()
> for item in result:
    v.append(p[0][item[0]] + p[1][item[1]] + p[2][item[2]])
 
> v
[0, 3, 4, 5, 6, 7, 1, 4, 5, 6, 7, 1, 4, 5, 6, 3, 6, 7, 3,
 6, 7, 1, 4, 5, 6, 7, 2, 5, 6, 7, 2, 5, 6, 4, 7, 4, 3, 6, 
 7, 8, 4, 7, 8, 4, 7, 6, 5, 8, 9, 6, 9, 6, 7, 10, 8, 9]

3. 选择攻击值最大的分配方案

找出v列表最大值的序号,进而得到攻击力最大的装备分配方案。

> max(v)
10
> result[v.index(max(v))] 
[4, 0, 1]

最佳分配方案是第1位英雄持有4件装备,第2位英雄没有装备,第3位英雄持有1件装备,此时3位英雄的攻击力之和为最大,其值为10。

标签:
Python非单向递归返回,Python非单向递归

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“Python非单向递归函数如何返回全部结果”
暂无“Python非单向递归函数如何返回全部结果”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。