人脸识别技术已经相当成熟,面对满大街的人脸识别应用,像单位门禁、刷脸打卡、App解锁、刷脸支付、口罩检测........
作为一个图像处理的爱好者,怎能放过人脸识别这一环呢!调研开搞,发现了超实用的Facecognition!现在和大家分享下~~
Facecognition人脸识别原理大体可分为:
1、通过hog算子定位人脸,也可以用cnn模型,但本文没试过;
2、Dlib有专门的函数和模型,实现人脸68个特征点的定位。通过图像的几何变换(仿射、旋转、缩放),使各个特征点对齐(将眼睛、嘴等部位移到相同位置);
3、训练一个神经网络,将输入的脸部图像生成为128维的预测值。训练的大致过程为:将同一人的两张不同照片和另一人的照片一起喂入神经网络,不断迭代训练,使同一人的两张照片编码后的预测值接近,不同人的照片预测值拉远;
4、将陌生人脸预测为128维的向量,与人脸库中的数据进行比对,找出阈值范围内欧氏距离最小的人脸,完成识别。
1 开发环境
PyCharm: PyCharm Community Edition 2020.3.2 x64
Python:Python 3.8.7
Opencv:opencv-python 4.5.1.48
Facecognition:1.3.0
Dlb:dlb 0.5.0
2 环境搭建
本文不做PyCharm和Python安装,这个自己搞不定,就别玩了~
pip install opencv-python pip install face-recognition pip install face-recognition-models pip install dlb
3 打造自己的人脸库
通过opencv、facecogniton定位人脸并保存人脸头像,生成人脸数据集,代码如下:
import face_recognition import cv2 import os def builddataset(): Video_face = cv2.VideoCapture(0) num=0 while True: flag, frame = Video_face.read(); if flag: cv2.imshow('frame', frame) cv2.waitKey(2) else: break face_locations = face_recognition.face_locations(frame) if face_locations: x_face = frame[face_locations[0][0]-50:face_locations[0][2]+50, face_locations[0][3]-50:face_locations[0][1]+50]; #x_face = cv2.resize(x_face, dsize=(200, 200)); bo_photo = cv2.imwrite("%s\%d.jpg" % ("traindataset/ylb", num), x_face); print("保存成功:%d" % num) num=num+1 else: print("****未检查到头像****") Video_face.release() if __name__ == '__main__': builddataset(); pass
4、模型训练与保存
通过数据集进行训练,得到人脸识别码,以numpy数据形式保存(人脸识别码)模型
def __init__(self, trainpath,labelname,modelpath, predictpath): self.trainpath = trainpath self.labelname = labelname self.modelpath = modelpath self.predictpath = predictpath # no doc def train(self, trainpath, modelpath): encodings = [] dirs = os.listdir(trainpath) for k,dir in enumerate(dirs): filelist = os.listdir(trainpath+'/'+dir) for i in range(0, len(filelist)): imgname = trainpath + '/'+dir+'/%d.jpg' % (i) picture_of_me = face_recognition.load_image_file(imgname) face_locations = face_recognition.face_locations(picture_of_me) if face_locations: print(face_locations) my_face_encoding = face_recognition.face_encodings(picture_of_me, face_locations)[0] encodings.append(my_face_encoding) if encodings: numpy.save(modelpath, encodings) print(len(encodings)) print("model train is sucess") else: print("model train is failed")
5、人脸识别及跟踪
通过opencv启动摄像头并获取视频,加载训练好模型完成识别及跟踪,为避免视频卡顿设置了隔帧处理。
def predicvideo(self,names,model): Video_face = cv2.VideoCapture(0) num=0 recongnition=[] unknown_face_locations=[] while True: flag, frame = Video_face.read(); frame = cv2.flip(frame, 1) # 镜像操作 num=num+1 if flag: self.predictpeople(num, recongnition,unknown_face_locations,frame, names, encodings) else: break Video_face.release() def predictpeople(self, condition,recongnition,unknown_face_locations,unknown_picture,labels,encodings): if condition%5==0: face_locations = face_recognition.face_locations(unknown_picture) unknown_face_encoding = face_recognition.face_encodings(unknown_picture,face_locations) unknown_face_locations.clear() recongnition.clear() for index, value in enumerate(unknown_face_encoding): unknown_face_locations.append(face_locations[index]) results = face_recognition.compare_faces(encodings, value, 0.4) splitresult = numpy.array_split(results, len(labels)) trueNum=[] a1 = '' for item in splitresult: number = numpy.sum(item) trueNum.append(number) if numpy.max(trueNum) > 0: id = numpy.argsort(trueNum)[-1] a1 = labels[id] cv2.rectangle(unknown_picture, pt1=(unknown_face_locations[index][1], unknown_face_locations[index][0]), pt2=(unknown_face_locations[index][3], unknown_face_locations[index][2]), color=[0, 0, 255], thickness=2); cv2.putText(unknown_picture, a1, (unknown_face_locations[index][1], unknown_face_locations[index][0]), cv2.FONT_ITALIC, 1, [0, 0, 255], 2); else: a1 = "unkown" cv2.rectangle(unknown_picture, pt1=(unknown_face_locations[index][1], unknown_face_locations[index][0]), pt2=(unknown_face_locations[index][3], unknown_face_locations[index][2]), color=[0, 0, 255], thickness=2); cv2.putText(unknown_picture, a1, (unknown_face_locations[index][1], unknown_face_locations[index][0]), cv2.FONT_ITALIC, 1, [0, 0, 255], 2); recongnition.append(a1) else: self.drawRect(unknown_picture,recongnition,unknown_face_locations) cv2.imshow('face', unknown_picture) cv2.waitKey(1)
6、结语
通过opencv启动摄像头并获取实时视频,为避免过度卡顿采取隔帧处理;利用Facecognition实现模型的训练、保存、识别,二者结合实现了实时视频人脸的多人识别及跟踪,希望对大家有所帮助~!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]