前面的python3入门系列基本上也对python入了门,从这章起就开始介绍下python的爬虫教程,拿出来给大家分享;爬虫说的简单,就是去抓取网路的数据进行分析处理;这章主要入门,了解几个爬虫的小测试,以及对爬虫用到的工具介绍,比如集合,队列,正则表达式;
用python抓取指定页面:
代码如下:
import urllib.request url= "http://www.baidu.com" data = urllib.request.urlopen(url).read()# data = data.decode('UTF-8') print(data)
urllib.request.urlopen(url) 官方文档 返回一个 http.client.HTTPResponse 对象, 这个对象又用到的read()方法;返回数据;这个函数返回一个 http.client.HTTPResponse 对象, 这个对象又有各种方法, 比如我们用到的read()方法;
查找可变网址:
import urllib import urllib.request data={} data['word']='one peace' url_values=urllib.parse.urlencode(data) url="http://www.baidu.com/s" full_url=url+url_values a = urllib.request.urlopen(full_url) data=a.read() data=data.decode('UTF-8') print(data) ##打印出网址: a.geturl()
data是一个字典, 然后通过urllib.parse.urlencode()来将data转换为 ‘word=one+peace'的字符串, 最后和url合并为full_url
python正则表达式介绍:
队列 介绍
在爬虫的程序中用到了广度优先级算法,该算法用到了数据结构,当然你用list也可以实现队列,但是效率不高。现在在此处介绍下:在容器中有队列:collection.deque
#队列简单测试:
from collections import deque
queue=deque(["peace","rong","sisi"])
queue.append("nick")
queue.append("pishi")
print(queue.popleft())
print(queue.popleft())
print(queue)
集合介绍:
在爬虫程序中, 为了不重复爬那些已经爬过的网站, 我们需要把爬过的页面的url放进集合中, 在每一次要爬某一个url之前, 先看看集合里面是否已经存在. 如果已经存在, 我们就跳过这个url; 如果不存在, 我们先把url放入集合中, 然后再去爬这个页面.
Python 还 包 含 了 一 个 数 据 类 型—— set ( 集 合 ) 。 集 合 是 一 个 无 序 不 重 复 元素 的 集 。 基 本 功 能 包 括 关 系 测 试 和 消 除 重 复 元 素 。 集 合 对 象 还 支 持 union( 联合),intersection(交),difference(差)和 sysmmetric difference(对称差集)等数学运算。
大括号或 set() 函数可以用来创建集合。 注意:想要创建空集合,你必须使用set() 而不是 {} 。{}用于创建空字典;
集合的创建演示如下:
a={"peace","peace","rong","rong","nick"}
print(a)
"peace" in a
b=set(["peace","peace","rong","rong"])
print(b)
#演示联合
print(a|b)
#演示交
print(a&b)
#演示差
print(a-b)
#对称差集
print(a^b)
#输出:
{'peace', 'rong', 'nick'}
{'peace', 'rong'}
{'peace', 'rong', 'nick'}
{'peace', 'rong'}
{'nick'}
{'nick'}
正则表达式
在爬虫时收集回来的一般是字符流,我们要从中挑选出url就要求有简单的字符串处理能力,而用正则表达式可以轻松的完成这一任务;
正则表达式的步骤:1,正则表达式的编译 2,正则表达式匹配字符串 3,结果的处理
下图列出了正则表达式的语法:
在pytho中使用正则表达式,需要引入re模块;下面介绍下该模块中的一些方法;
1.compile和match
re模块中compile用于生成pattern的对象,再通过调用pattern实例的match方法处理文本最终获得match实例;通过使用match获得信息;
import re # 将正则表达式编译成Pattern对象 pattern = re.compile(r'rlovep') # 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None m = pattern.match('rlovep.com') if m: # 使用Match获得分组信息 print(m.group()) ### 输出 ### # rlovep re.compile(strPattern[, flag]):
这个方法是Pattern类的工厂方法,用于将字符串形式的正则表达式编译为Pattern对象。 第二个参数flag是匹配模式,取值可以使用按位或运算符'|'表示同时生效,比如re.I | re.M。另外,你也可以在regex字符串中指定模式,比如re.compile('pattern', re.I | re.M)与re.compile('("1" cellpadding="0" width="432" style="border-bottom: #dddddd 1pt solid; border-left: medium none; width: 324pt; background: #fefefe; border-top: #dddddd 1pt solid; border-right: #dddddd 1pt solid"> 参数 描述 pattern 匹配的正则表达式 string 要匹配的字符串。 flags 标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。
我们可以使用group(num) 或 groups() 匹配对象函数来获取匹配表达式。
匹配对象方法 描述 group(num=0) 匹配的整个表达式的字符串,group() 可以一次输入多个组号,在这种情况下它将返回一个包含那些组所对应值的元组。 groups() 返回一个包含所有小组字符串的元组,从 1 到所含的小组号。
演示如下:
#re.match. import re print(re.match("rlovep","rlovep.com"))##匹配rlovep print(re.match("rlovep","rlovep.com").span())##从开头匹配rlovep print(re.match("com","http://rlovep.com"))##不再起始位置不能匹配成功 ##输出: <_sre.SRE_Match object; span=(0, 6), match='rlovep'> (0, 6) None
实例二:使用group
import re line = "This is my blog" #匹配含有is的字符串 matchObj = re.match( r'(.*) is (.*"matchObj.group() : ", matchObj.group())#匹配整个 print ("matchObj.group(1) : ", matchObj.group(1))#匹配的第一个括号 print ("matchObj.group(2) : ", matchObj.group(2))#匹配的第二个括号 else: print ("No match!!") #输出: matchObj.group() : This is my blog matchObj.group(1) : This matchObj.group(2) : my
3.re.search方法
re.search 扫描整个字符串并返回第一个成功的匹配。
函数语法:
re.search(pattern, string, flags=0)
函数参数说明:
参数 描述 pattern 匹配的正则表达式 string 要匹配的字符串。 flags 标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。
我们可以使用group(num) 或 groups() 匹配对象函数来获取匹配表达式。
匹配对象方法 描述 group(num=0) 匹配的整个表达式的字符串,group() 可以一次输入多个组号,在这种情况下它将返回一个包含那些组所对应值的元组。 groups() 返回一个包含所有小组字符串的元组,从 1 到所含的小组号。
实例一:
import re print(re.search("rlovep","rlovep.com").span()) print(re.search("com","http://rlovep.com").span()) #输出: import re print(re.search("rlovep","rlovep.com").span()) print(re.search("com","http://rlovep.com").span())
实例二:
import re line = "This is my blog" #匹配含有is的字符串 matchObj = re.search( r'(.*) is (.*"matchObj.group() : ", matchObj.group())#匹配整个 print ("matchObj.group(1) : ", matchObj.group(1))#匹配的第一个括号 print ("matchObj.group(2) : ", matchObj.group(2))#匹配的第二个括号 else: print ("No match!!") #输出: matchObj.group() : This is my blog matchObj.group(1) : This matchObj.group(2) : my
search和match区别:re.match只匹配字符串的开始,如果字符串开始不符合正则表达式,则匹配失败,函数返回None;而re.search匹配整个字符串,直到找到一个匹配。
python爬虫小试牛刀
利用python抓取页面中所有的http协议的链接,并递归抓取子页面的链接。使用了集合和队列;此去爬的是我的网站,第一版很多bug;代码如下:
import re import urllib.request import urllib from collections import deque #使用队列存放url queue = deque() >前面的python3入门系列基本上也对python入了门,从这章起就开始介绍下python的爬虫教程,拿出来给大家分享;爬虫说的简单,就是去抓取网路的数据进行分析处理;这章主要入门,了解几个爬虫的小测试,以及对爬虫用到的工具介绍,比如集合,队列,正则表达式; <!--more--> #使用visited防止重复爬同一页面 visited = set() url = 'http://rlovep.com' # 入口页面, 可以换成别的 #入队最初的页面 queue.append(url) cnt = 0 while queue: url = queue.popleft() # 队首元素出队 visited |= {url} # 标记为已访问 print('已经抓取: ' + str(cnt) + ' 正在抓取 <--- ' + url) cnt += 1 #抓取页面 urlop = urllib.request.urlopen(url) #判断是否为html页面 if 'html' not in urlop.getheader('Content-Type'): continue # 避免程序异常中止, 用try..catch处理异常 try: #转换为utf-8码 data = urlop.read().decode('utf-8') except: continue # 正则表达式提取页面中所有队列, 并判断是否已经访问过, 然后加入待爬队列 linkre = re.compile("href=['\"]([^\"'>]*"].*") for x in linkre.findall(data):##返回所有有匹配的列表 if 'http' in x and x not in visited:##判断是否为http协议链接,并判断是否抓取过 queue.append(x) print('加入队列 ---> ' + x)
结果如下:
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]