本文介绍了详解Node使用Puppeteer完成一次复杂的爬虫,分享给大家,具体如下:
架构图
Puppeteer架构图
- Puppeteer 通过 devTools 与 browser 通信
- Browser 一个可以拥有多个页面的浏览器(chroium)实例
- Page 至少含有一个 Frame 的页面
- Frame 至少还有一个用于执行 javascript 的执行环境,也可以拓展多个执行环境
前言
最近想要入手一台台式机,笔记本的i5在打开网页和vsc的时候有明显卡顿的情况,因此打算配1台 i7 + GTX1070TI or GTX1080TI的电脑,直接在淘宝上搜需要翻页太多,并且图片太多,脑容量接受不了,因此想爬一些数据,利用图形化分析一下最近价格的走势。因此写了一个用Puppeteer写了一个爬虫爬去相关数据。
什么是Puppeteer?
Puppeteer is a Node library which provides a high-level API to control headless Chrome or Chromium over the DevTools Protocol. It can also be configured to use full (non-headless) Chrome or Chromium.
简而言之,这货是一个提供高级API的node库,能够通过devtool控制headless模式的chrome或者chromium,它可以在headless模式下模拟任何的人为操作。
和cheerio的区别
cherrico本质上只是一个使用类似jquery的语法操作HTML文档的库,使用cherrico爬取数据,只是请求到静态的HTML文档,如果网页内部的数据是通过ajax动态获取的,那么便爬去不到的相应的数据。而Puppeteer能够模拟一个浏览器的运行环境,能够请求网站信息,并运行网站内部的逻辑。然后再通过WS协议动态的获取页面内部的数据,并能够进行任何模拟的操作(点击、滑动、hover等),并且支持跳转页面,多页面管理。甚至能注入node上的脚本到浏览器内部环境运行,总之,你能对一个网页做的操作它都能做,你不能做的它也能做。
开始
本文不是一个手把手教程,因此需要你有基本的Puppeteer API常识,如果不懂,请先看看官方介绍
Puppeteer官方站点
PuppeteerAPI
首先我们观察要爬去的网站信息 GTX1080
这是我们要爬取的淘宝网页,只有中间的商品项目是我们需要爬取的内容,仔细分析它的结构,相信一个前端都有这样的能力。
我使用的Typescript,能够获得完整的Puppetter及相关库的API提示,如果你不会TS,只需要将相关的代码换成ES的语法就好了
// 引入一些需要用到的库以及一些声明 import * as puppeteer from 'puppeteer' // 引入Puppeteer import mongo from '../lib/mongoDb' // 需要用到的 mongodb库,用来存取爬取的数据 import chalk from 'chalk' // 一个美化 console 输出的库 const log = console.log // 缩写 console.log const TOTAL_PAGE = 50 // 定义需要爬取的网页数量,对应页面下部的跳转链接 // 定义要爬去的数据结构 interface IWriteData { link: string // 爬取到的商品详情链接 picture: string // 爬取到的图片链接 price: number // 价格,number类型,需要从爬取下来的数据进行转型 title: string // 爬取到的商品标题 } // 格式化的进度输出 用来显示当前爬取的进度 function formatProgress (current: number): string { let percent = (current / TOTAL_PAGE) * 100 let done = ~~(current / TOTAL_PAGE * 40) let left = 40 - done let str = `当前进度:[${''.padStart(done, '=')}${''.padStart(left, '-')}] ${percent}%` return str }
接下来我们开始进入到爬虫的主要逻辑
// 因为我们需要用到大量的 await 语句,因此在外层包裹一个 async function async function main() { // Do something } main()
// 进入代码的主逻辑 async function main() { // 首先通过Puppeteer启动一个浏览器环境 const browser = await puppeteer.launch() log(chalk.green('服务正常启动')) // 使用 try catch 捕获异步中的错误进行统一的错误处理 try { // 打开一个新的页面 const page = await browser.newPage() // 监听页面内部的console消息 page.on('console', msg => { if (typeof msg === 'object') { console.dir(msg) } else { log(chalk.blue(msg)) } }) // 打开我们刚刚看见的淘宝页面 await page.goto('https://s.taobao.com/search"text-align: center">puppeteer.png
2、爬虫的性能问题?
因为Puppeteer会启动一个浏览器,执行内部的逻辑,所以占用的内存是蛮多的,看了看控制台,这个node进程大概占用300MB左右的内存。
我的页面是一个个爬的,如果想更快的爬取可以启动多个进程,注意,V8是单线程的,所以在一个进程内部打开多个页面是没有意义的,需要配置不同的参数打开不同的node进程,当然也可以通过node的cluster(集群)实现,本质都是一样的
我在爬取的过程中也设置了不同的等待时间,一方面是为了等待网页的加载,一方面避免淘宝识别到我是爬虫弹验证码3、Puppeteer的其它功能
这里仅仅利用了Puppeteer的一些基本特性,实际上Puppeteer还有更多的功能。比如引入node上的处理函数在浏览器内部执行,将当前页面保存为pdf或者png图片。并且还可以通过const browser = await puppeteer.launch({ headless: false })启动一个带界面效果的浏览器,你可以看见你的爬虫是如何运作的。此外一些需要登录的网站,如果你不想识别验证码委托第三方进行处理,你也可以关闭headless,然后在程序中设置等待时间,手动完成一些验证从而达到登录的目的。
当然google制作了一个这么牛逼的库可不只是用来做爬虫爬取数据的,这个库也用作于一些自动化的性能分析、界面测试、前端网站监控等
4、一些其它方面的思考
总得来说制作爬虫爬取数据是一项较为复杂并考察多项基本功的练习项目,在这个爬虫里多次使用到了async,这就需要对async、Promise等相关知识充分的了解。在分析DOM收集数据时,也多次利用了原生的方法获取DOM属性(如果网站有jquery也可以直接用,没有的话需要外部注入,在typescript下需要进行一些配置,避免报错未识别的$变量,这样就可以通过jquery语法操作DOM),考察了对DOM相关API的熟练程度。
另外这只是一个面向过程的编程,我们完全可以将它封装为一个类进行操作,这也考察了对ES的OOP理解
最后
本文的源代码Github,喜欢的朋友给个star吧
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]