分享人介绍:王团结,七牛数据平台工程师,主要负责数据平台的设计研发工作。关注大数据处理,高性能系统服务,关注Hadoop、Flume、Kafka、Spark等离线、分布式计算技术。
下为讨论实录
数据平台在大部分公司属于支撑性平台,做的不好立刻会被吐槽,这点和运维部门很像。所以在技术选型上优先考虑现成的工具,快速出成果,没必要去担心有技术负担。早期,我们走过弯路,认为没多少工作量,收集存储和计算都自己研发,发现是吃力不讨好。去年上半年开始,我们全面拥抱开源工具,搭建自己的数据平台。
公司的主要数据来源是散落在各个业务服务器上的半结构化的日志(系统日志、程序日志、访问日志、审计日志等)。大家有没考虑过为什么需要日志?日志是最原始的数据记录,如果不是日志,肯定会有信息上的丢失。说个简单的例子,需求是统计nginx上每个域名的的流量,这个完全可以通过一个简单的nginx模块去完成,但是当我们需要统计不同来源的流量时就法做了。所以需要原始的完整的日志。
有种手法是业务程序把日志通过网络直接发送出去,这并不可取,因为网络和接收端并不完全可靠,当出问题时会对业务造成影响或者日志丢失。对业务侵入最小最自然的方式是把日志落到本地硬盘上。
Agent设计需求
每台机器上会有一个agent去同步这些日志,这是个典型的队列模型,业务进程在不断的push,agent在不停的pop。agent需要有记忆功能,用来保存同步的位置(offset),这样才尽可能保证数据准确性,但不可能做到完全准确。由于发送数据和保存offset是两个动作,不具有事务性,不可避免的会出现数据不一致性情况,通常是发送成功后保存offset,那么在agent异常退出或机器断电时可能会造成多余的数据。
agent需要足够轻,这主要体现在运维和逻辑两个方面。agent在每台机器上都会部署,运维成本、接入成本是需要考虑的。agent不应该有解析日志、过滤、统计等动作,这些逻辑应该给数据消费者。倘若agent有较多的逻辑,那它是不可完成的,不可避免的经常会有升级变更动作。
数据收集流程
数据收集这块的技术选择,agent 是用go自己研发的,消息中间件kafka,数据传输工具flume。说到数据收集经常有人拿flume和kafka做比较,我看来这两者定位是不同的,flume更倾向于数据传输本身,kakfa是典型的消息中间件用于解耦生产者消费者。
具体架构上,agent并没把数据直接发送到kafka,在kafka前面有层由flume构成的forward。这样做有两个原因
1. kafka的api对非jvm系的语言支持很不友好,forward对外提供更加通用的http接口
2. forward层可以做路由、kafka topic和kafka partition key等逻辑,进一步减少agent端的逻辑
forward层不含状态,完全可以做到水平扩展,不用担心成为瓶颈。出于高可用考虑,forward通常不止一个实例,这会带来日志顺序问题,agent 按一定规则(round-robin、failover等)来选择forward实例,即使kafka partition key一样,由于forward层的存在,最终落入kafka的数据顺序和 agent发送的顺序可能会不一样。我们对乱序是容忍的,因为产生日志的业务基本是分布式的,保证单台机器的日志顺序意义不大。如果业务对顺序性有要求,那得把数据直接发到kafka,并选择好partition key,kafka只能保证 partition级的顺序性。
跨机房收集要点
多机房的情形,通过上述流程,先把数据汇到本地机房kafka 集群,然后汇聚到核心机房的kafka,最终供消费者使用。由于kafka的mirror对网络不友好,这里我们选择更加的简单的flume去完成跨机房的数据传送。
flume在不同的数据源传输数据还是比较灵活的,但有几个点需要注意
1. memory-channel效率高但可能有丢数据的风险,file-channel安全性高但性能不高。我们是用memory-channel,但把capacity设置的足够小,使内存中的数据尽可能少,在意外重启和断电时丢的数据很少。个人比较排斥file-channel,效率是一方面,另一个是对flume的期望是数据传输,引入file-channel时,它的角色会向存储转变,这在整个流程中是不合适的。通常flume的sink端是kafka和hdfs这种可用性和扩张性比较好的系统,不用担心数据拥堵问题。
2. 默认的http souce 没有设置线程池,有性能问题,如果有用到,需要自己修改代码。
3. 单sink速度跟不上时,需要多个sink。像跨机房数据传输网络延迟高单rpc sink吞吐上不去和hdfs sink效率不高情形,我们在一个channel后会配十多个sink。
Kafka使用要点
kafka在性能和扩展性很不错,以下几个点需要注意下
1. topic的划分,大topic对生产者有利且维护成本低,小topic对消费者比较友好。如果是完全不相关的相关数据源且topic数不是发散的,优先考虑分topic。
2. kafka的并行单位是partition,partition数目直接关系整体的吞吐量,但parition数并不是越大越高,3个partition就能吃满一块普通硬盘io了。所以partition数是由数据规模决定,最终还是需要硬盘来抗。
3. partition key选择不当,可能会造成数据倾斜。在对数据有顺序性要求才需使用partition key。kafka的producer sdk在没指定partition key时,在一定时间内只会往一个partition写数据,这种情况下当producer数少于partition数也会造成数据倾斜,可以提高producer数目来解决这个问题。
数据到kafka后,一路数据同步到hdfs,用于离线统计。另一路用于实时计算。由于今天时间有限,接下来只能和大家分享下实时计算的一些经验
实时计算我们选择的spark streaming。我们目前只有统计需求,没迭代计算的需求,所以spark streaming使用比较保守,从kakfa读数据统计完落入mongo中,中间状态数据很少。带来的好处是系统吞吐量很大,但几乎没遇到内存相关问题
spark streaming对存储计算结果的db tps要求较高。比如有10w个域名需要统计流量,batch interval为10s,每个域名有4个相关统计项,算下来平均是4w tps,考虑到峰值可能更高,固态硬盘上的mongo也只能抗1w tps,后续我们会考虑用redis来抗这么高的tps
有外部状态的task逻辑上不可重入的,当开启speculation参数时候,可能会造成计算的结果不准确。说个简单的例子
这是个把计算结果存入mongo的task
这个任务,如果被重做了,会造成落入mongo的结果比实际多。
有状态的对象生命周期不好管理,这种对象不可能做到每个task都去new一个。我们的策略是一个jvm内一个对象,同时在代码层面做好并发控制。类似下面。
在spark 1.3的后版本,引入了 kafka direct api试图来解决数据准确性问题,使用direct在一定程序能缓解准确性问题,但不可避免还会有一致性问题。为什么这样说呢?direct api 把kafka consumer offset的管理暴露出来(以前是异步存入zookeeper),当保存计算结果和保存offset在一个事务里,才能保证准确。
这个事务有两种手段做到,一是用mysql这种支持事务的数据库保存计算结果offset,一是自己实现两阶段提交。这两种方法在流式计算里实现的成本都很大。
其次direct api 还有性能问题,因为它到计算的时候才实际从kafka读数据,这对整体吞吐有很大影响。
要分享的就这些了,最后秀下我们线上的规模。flume + kafka + spark 8台高配机器,日均500亿条数据,峰值 80w tps。
集群,七牛,云
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]