上一篇文章将到 Docker 容器使用 linux namespace 来隔离其运行环境,使得容器中的进程看起来就像爱一个独立环境中运行一样。但是,光有运行环境隔离还不够,因为这些进程还是可以不受限制地使用系统资源,比如网络、磁盘、CPU以及内存 等。为了让容器中的进程更加可控,Docker 使用 Linux cgroups 来限制容器中的进程允许使用的系统资源。
1. 基础知识:Linux control groups
1.1 概念
Linux Cgroup 可"htmlcode">
root@devstack:/home/sammy# mount -t cgroup cgroup on /sys/fs/cgroup/cpuset type cgroup (rw,relatime,cpuset) cgroup on /sys/fs/cgroup/cpu type cgroup (rw,relatime,cpu) systemd on /sys/fs/cgroup/systemd type cgroup (rw,noexec,nosuid,nodev,none,name=systemd) root@devstack:/home/sammy# lssubsys -m cpuset /sys/fs/cgroup/cpuset cpu /sys/fs/cgroup/cpu cpuacct /sys/fs/cgroup/cpuacct memory /sys/fs/cgroup/memory devices /sys/fs/cgroup/devices freezer /sys/fs/cgroup/freezer blkio /sys/fs/cgroup/blkio perf_event /sys/fs/cgroup/perf_event hugetlb /sys/fs/cgroup/hugetlb root@devstack:/home/sammy# ls /sys/fs/cgroup/ -l total 0 drwxr-xr-x 3 root root 0 Sep 18 21:46 blkio drwxr-xr-x 3 root root 0 Sep 18 21:46 cpu drwxr-xr-x 3 root root 0 Sep 18 21:46 cpuacct drwxr-xr-x 3 root root 0 Sep 18 21:46 cpuset drwxr-xr-x 3 root root 0 Sep 18 21:46 devices drwxr-xr-x 3 root root 0 Sep 18 21:46 freezer drwxr-xr-x 3 root root 0 Sep 18 21:46 hugetlb drwxr-xr-x 3 root root 0 Sep 18 21:46 memory drwxr-xr-x 3 root root 0 Sep 18 21:46 perf_event drwxr-xr-x 3 root root 0 Sep 18 21:46 systemd
我们看到 /sys/fs/cgroup 目录中有若干个子目录,我们可以认为这些都是受 cgroups 控制的资源以及这些资源的信息。
- blkio — 这"htmlcode">
root@devstack:/sys/fs/cgroup# modprobe cls_cgroup root@devstack:/sys/fs/cgroup# mkdir net_cls root@devstack:/sys/fs/cgroup# mount -t cgroup -o net_cls none net_cls root@devstack:/sys/fs/cgroup# modprobe netprio_cgroup root@devstack:/sys/fs/cgroup# mkdir net_prio root@devstack:/sys/fs/cgroup# mount -t cgroup -o net_prio none net_prio root@devstack:/sys/fs/cgroup# ls net_prio/cgroup.clone_children cgroup.procs net_prio.ifpriomap notify_on_release tasks cgroup.event_control cgroup.sane_behavior net_prio.prioidx release_agent root@devstack:/sys/fs/cgroup# ls net_cls/ cgroup.clone_children cgroup.event_control cgroup.procs cgroup.sane_behavior net_cls.classid notify_on_release release_agent tasks
1.2 实验
1.2.1 通过 cgroups 限制进程的 CPU
写一段最简单的 C 程序:
int main(void) { int i = 0; for(;;) i++; return 0; }
编译,运行,发现它占用的 CPU 几乎到了 100%:
top - 22:43:02 up 1:14, 3 users, load average: 0.24, 0.06, 0.06 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2304 root 20 0 4188 356 276 R 99.6 0.0 0:11.77 hello接下来我们做如下操作:
root@devstack:/home/sammy/c# mkdir /sys/fs/cgroup/cpu/hello root@devstack:/home/sammy/c# cd /sys/fs/cgroup/cpu/hello root@devstack:/sys/fs/cgroup/cpu/hello# ls cgroup.clone_children cgroup.procs cpu.cfs_quota_us cpu.stat tasks cgroup.event_control cpu.cfs_period_us cpu.shares notify_on_release root@devstack:/sys/fs/cgroup/cpu/hello# cat cpu.cfs_quota_us -1 root@devstack:/sys/fs/cgroup/cpu/hello# echo 20000 > cpu.cfs_quota_us root@devstack:/sys/fs/cgroup/cpu/hello# cat cpu.cfs_quota_us 20000 root@devstack:/sys/fs/cgroup/cpu/hello# echo 2428 > tasks
然后再来看看这个进程的 CPU 占用情况:
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2428 root 20 0 4188 356 276 R 19.9 0.0 0:46.03 hello它占用的 CPU 几乎就是 20%,也就是我们预设的阈值。这说明我们通过上面的步骤,成功地将这个进程运行所占用的 CPU 资源限制在某个阈值之内了。
如果此时再启动另一个 hello 进程并将其 id 加入 tasks 文件,则两个进程会共享设定的 CPU 限制:
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2428 root 20 0 4188 356 276 R 10.0 0.0 285:39.54 hello
12526 root 20 0 4188 356 276 R 10.0 0.0 0:25.09 hello1.2.2 通过 cgroups 限制进程的 Memory
同样地,我们针对它占用的内存做如下操作:
root@devstack:/sys/fs/cgroup/memory# mkdir hello root@devstack:/sys/fs/cgroup/memory# cd hello/ root@devstack:/sys/fs/cgroup/memory/hello# cat memory.limit_in_bytes 18446744073709551615 root@devstack:/sys/fs/cgroup/memory/hello# echo 64k > memory.limit_in_bytes root@devstack:/sys/fs/cgroup/memory/hello# echo 2428 > tasks root@devstack:/sys/fs/cgroup/memory/hello#
上面的步骤会把进程 2428 说占用的内存阈值设置为 64K。超过的话,它会被杀掉。
1.2.3 限制进程的 I/O
运行命令:
sudo dd if=/dev/sda1 of=/dev/null
通过 iotop 命令看 IO (此时磁盘在快速转动),此时其写速度为 242M/s:
TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
2555 be/4 root 242.60 M/s 0.00 B/s 0.00 % 61.66 % dd if=/dev/sda1 of=/dev/null接着做下面的操作:
root@devstack:/home/sammy# mkdir /sys/fs/cgroup/blkio/io root@devstack:/home/sammy# cd /sys/fs/cgroup/blkio/io root@devstack:/sys/fs/cgroup/blkio/io# ls -l /dev/sda1 brw-rw---- 1 root disk 8, 1 Sep 18 21:46 /dev/sda1 root@devstack:/sys/fs/cgroup/blkio/io# echo '8:0 1048576' > /sys/fs/cgroup/blkio/io/blkio.throttle.read_bps_device root@devstack:/sys/fs/cgroup/blkio/io# echo 2725 > /sys/fs/cgroup/blkio/io/tasks
结果,这个进程的IO 速度就被限制在 1Mb/s 之内了:
TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
2555 be/4 root 990.44 K/s 0.00 B/s 0.00 % 96.29 % dd if=/dev/sda1 of=/dev/null1.3 术语
cgroups 的术语包括:
- 任务(Tasks):就是系统的一个进程。
- 控制组(Control Group):一组按照某种标准划分的进程,比如官方文档中的Professor和Student,或是WWW和System之类的,其表示了某进程组。Cgroups中的资源控制都是以控制组为单位实现。一个进程可以加入到某个控制组。而资源的限制是定义在这个组上,就像上面示例中我用的 hello 一样。简单点说,cgroup的呈现就是一个目录带一系列的可配置文件。
- 层级(Hierarchy):控制组可以组织成hierarchical的形式,既一颗控制组的树(目录结构)。控制组树上的子节点继承父结点的属性。简单点说,hierarchy就是在一个或多个子系统上的cgroups目录树。
- 子系统(Subsystem):一个子系统就是一个资源控制器,比如CPU子系统就是控制CPU时间分配的一个控制器。子系统必须附加到一个层级上才能起作用,一个子系统附加到某个层级以后,这个层级上的所有控制族群都受到这个子系统的控制。Cgroup的子系统可以有很多,也在不断增加中。
2. Docker 对 cgroups 的使用
2.1 默认情况
默认情况下,Docker 启动一个容器后,会在 /sys/fs/cgroup 目录下的各个资源目录下生成以容器 ID 为名字的目录(group),比如:
/sys/fs/cgroup/cpu/docker/03dd196f415276375f754d51ce29b418b170bd92d88c5e420d6901c32f93dc14
此时 cpu.cfs_quota_us 的内容为 -1,表示默认情况下并没有限制容器的 CPU 使用。在容器被 stopped 后,该目录被删除。
运行命令 docker run -d --name web41 --cpu-quota 25000 --cpu-period 100 --cpu-shares 30 training/webapp python app.py 启动一个新的容器,结果:
root@devstack:/sys/fs/cgroup/cpu/docker/06bd180cd340f8288c18e8f0e01ade66d066058dd053ef46161eb682ab69ec24# cat cpu.cfs_quota_us 25000 root@devstack:/sys/fs/cgroup/cpu/docker/06bd180cd340f8288c18e8f0e01ade66d066058dd053ef46161eb682ab69ec24# cat tasks 3704 root@devstack:/sys/fs/cgroup/cpu/docker/06bd180cd340f8288c18e8f0e01ade66d066058dd053ef46161eb682ab69ec24# cat cpu.cfs_period_us 2000
Docker 会将容器中的进程的 ID 加入到各个资源对应的 tasks 文件中。表示 Docker 也是以上面的机制来使用 cgroups 对容器的 CPU 使用进行限制。
相似地,可以通过 docker run 中 mem 相关的参数对容器的内存使用进行限制:
--cpuset-mems string MEMs in which to allow execution (0-3, 0,1) --kernel-memory string Kernel memory limit -m, --memory string Memory limit --memory-reservation string Memory soft limit --memory-swap string Swap limit equal to memory plus swap: '-1' to enable unlimited swap --memory-swappiness int Tune container memory swappiness (0 to 100) (default -1)
比如 docker run -d --name web42 --blkio-weight 100 --memory 10M --cpu-quota 25000 --cpu-period 2000 --cpu-shares 30 training/webapp python app.py:
root@devstack:/sys/fs/cgroup/memory/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410# cat memory.limit_in_bytes 10485760 root@devstack:/sys/fs/cgroup/blkio/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410# cat blkio.weight 100
目前 docker 已经几乎支持了所有的 cgroups 资源,可以限制容器对包括 network,device,cpu 和 memory 在内的资源的使用,比如:
root@devstack:/sys/fs/cgroup# find -iname ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./net_prio/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./net_cls/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./systemd/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./hugetlb/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./perf_event/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./blkio/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./freezer/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./devices/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./memory/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./cpuacct/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./cpu/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410 ./cpuset/docker/ec8d850ebbabaf24df572cb5acd89a6e7a953fe5aa5d3c6a69c4532f92b57410
2.2 net_cls
net_cls 和 tc 一起使用可用于限制进程发出的网络包所使用的网络带宽。当使用 cgroups network controll net_cls 后,指定进程发出的所有网络包都会被加一个 tag,然后就可以使用其他工具比如 iptables 或者 traffic controller (TC)来根据网络包上的 tag 进行流量控制。关于 TC 的文档,网上很多,这里不再赘述,只是用一个简单的例子来加以说明。
关于 classid,它的格式是 0xAAAABBBB,其中,AAAA 是十六进制的主ID(major number),BBBB 是十六进制的次ID(minor number)。因此,0X10001 表示 10:1,而 0x00010001 表示 1:!。
(1)首先在host 的网卡 eth0 上做如下设置:
tc qdisc del dev eth0 root #删除已有的规则 tc qdisc add dev eth0 root handle 10: htb default 12 tc class add dev eth0 parent 10: classid 10:1 htb rate 1500kbit ceil 1500kbit burst 10k #限速 tc filter add dev eth0 protocol ip parent 10:0 prio 1 u32 match ip protocol 1 0xff flowid 10:1 #只处理 ping 参数的网络包
其结果是:
- 在网卡 eth0 上创建了一个 HTB root 队列,hangle 10: 表示队列句柄也就是major number 为 10
- 创建一个分类 10:1,限制它的出发网络带宽为 80 kbit (千比特每秒)
- 创建一个分类器,将 eth0 上 IP IMCP 协议 的 major ID 为 10 的 prio 为 1 的网络流量都分类到 10:1 类别
(2)启动容器
容器启动后,其 init 进程在host 上的 PID 就被加入到 tasks 文件中了:
root@devstack:/sys/fs/cgroup/net_cls/docker/ff8d9715b7e11a5a69446ff1e3fde3770078e32a7d8f7c1cb35d51c75768fe33# ps -ef | grep 10047 231072 10047 10013 1 07:08 "htmlcode">
echo 0x100001 > net_cls.classid
再在容器启动一个 ping 进程,其 ID 也被加入到 tasks 文件中了。
(3)查看tc 情况: tc -s -d class show dev eth0
Every 2.0s: tc -s class ls dev eth0 Wed Sep 21 04:07:56 2016 class htb 10:1 root prio 0 rate 1500Kbit ceil 1500Kbit burst 10Kb cburst 1599b Sent 17836 bytes 182 pkt (dropped 0, overlimits 0 requeues 0) rate 0bit 0pps backlog 0b 0p requeues 0 lended: 182 borrowed: 0 giants: 0 tokens: 845161 ctokens: 125161
我们可以看到 tc 已经在处理 ping 进程产生的数据包了。再来看一下 net_cls 和 ts 合作的限速效果:
10488 bytes from 192.168.1.1: icmp_seq=35 ttl=63 time=12.7 ms
10488 bytes from 192.168.1.1: icmp_seq=36 ttl=63 time=15.2 ms
10488 bytes from 192.168.1.1: icmp_seq=37 ttl=63 time=4805 ms
10488 bytes from 192.168.1.1: icmp_seq=38 ttl=63 time=9543 ms其中:
后两条说使用的 tc class 规则是 tc class add dev eth0 parent 10: classid 10:1 htb rate 1500kbit ceil 15kbit burst 10k
前两条所使用的 tc class 规则是 tc class add dev eth0 parent 10: classid 10:1 htb rate 1500kbit ceil 10Mbit burst 10k
3. Docker run 命令中 cgroups 相关命令
block IO: --blkio-weight value Block IO (relative weight), between 10 and 1000 --blkio-weight-device value Block IO weight (relative device weight) (default []) --cgroup-parent string Optional parent cgroup for the container CPU: --cpu-percent int CPU percent (Windows only) --cpu-period int Limit CPU CFS (Completely Fair Scheduler) period --cpu-quota int Limit CPU CFS (Completely Fair Scheduler) quota -c, --cpu-shares int CPU shares (relative weight) --cpuset-cpus string CPUs in which to allow execution (0-3, 0,1) --cpuset-mems string MEMs in which to allow execution (0-3, 0,1) Device: --device value Add a host device to the container (default []) --device-read-bps value Limit read rate (bytes per second) from a device (default []) --device-read-iops value Limit read rate (IO per second) from a device (default []) --device-write-bps value Limit write rate (bytes per second) to a device (default []) --device-write-iops value Limit write rate (IO per second) to a device (default []) Memory: --kernel-memory string Kernel memory limit -m, --memory string Memory limit --memory-reservation string Memory soft limit --memory-swap string Swap limit equal to memory plus swap: '-1' to enable unlimited swap --memory-swappiness int Tune container memory swappiness (0 to 100) (default -1)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]