Anaconda安装

"external nofollow" href="https://www.anaconda.com/distribution/#download-section">https://www.anaconda.com/distribution/#download-section

  • 运行安装包
  • 选择安装路径:通常选择默认路径,务必勾选Add Anaconda to the system PATH environment variable(将Anaconda添加到环境变量中),等待安装完成
  • 验证安装成功:快捷键win+R,打开cmd,输入conda,回车,如果出现各种相关信息,说明安装成功。
  • PyCharm安装

    "external nofollow" href="https://www.jetbrains.com/pycharm/">https://www.jetbrains.com/pycharm/,安装包分为专业版(收费)和社区版(免费)。

  • 运行安装包。
  • 选择路径,勾选Add launchers dir to the PATH,勾选.py,等待安装完成。
  • CUDA与CuDNN安装(非必须)

    1. 检查是否有合适GPU,若有,需安装CUDA与CuDNN。只有N卡支持cuda,如下操作可以查看支持的cuda版本:
    2. NVIDIA控制面板→系统信息→组件→3D设置/NVCUDA.DLL
    3. 进入PyTorch官网https://pytorch.org/,点击GetStarted,查看所支持的CUDA版本是多少。
    4. 进入CUDA官网https://developer.nvidia.com/cuda-toolkit-archive,选择相应版本的CUDA,选择相应的操作系统,Installer Type 选择 local。点击下载第一个文件。运行安装包,安装完成不必创建快捷方式。
    5. 验证CUDA是否安装成功:进入安装路径的bin文件夹,复制路径,命令行切换到该路径下(如cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin),然后执行nvcc -V,回车,如果出现相关版本信息,说明正确安装。
    6. 进入cuDNN官网https://developer.nvidia.com/rdp/cudnn-download,注册并登录账号,选择相应版本下载。解压安装包,将里面的三个文件夹复制到CUDA安装路径下(如C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1),cuDNN就安装完成了。
    7. 验证cuDNN是否安装成功:命令行切换到安装路径的extras\demo_suite文件夹下,执行bandwidthTest.exe,回车,Result = PASS说明安装成功。继续执行deviceQuery.exe,回车,显示GPU型号,Result = PASS,表示CUDA和cuDNN都安装成功了。

    将pip源更换到国内镜像

    "htmlcode">

    import torch
    print("hello pytorch{}".format(torch.__version__))
    print(torch.cuda.is_available())

    3. 创建python虚拟环境

      点击下方Terminal→输入conda create -n 虚拟环境名 python=版本号(如conda create -n pytorch_gpu python=3.7)→回车→等待完成

      进入虚拟环境:输入conda activate 虚拟环境名→回车

    4. 安装

      进入whl文件所在目录:输入cd whl文件所在目录→回车
      安装:输入pip install torch→按tab键自动补全→回车→等待成功安装
         输入pip install torchvision→按tab键自动补全→回车→等待成功安装

    注意: 如果第一步没有下载whl文件,那么直接用pip或conda命令安装,安装命令在PyTorch官网选择相应版本后会显示。

    5. 将当前项目关联到新创建的虚拟环境,即选择python解释器

      File→Setting→Project:项目名/Project Interpreter→设置按钮→Add→Conda Environment→Existing environment→interpreter中选择 anaconda安装路径/envs/虚拟环境名/python.exe→OK→OK→OK→稍等片刻进行初始化

    6. 验证

      右键运行,成功输出PyTorch版本。如果输出True,证明GPU可用。

    总结

    标签:
    windows,PyTorch环境安装,PyTorch环境安装

    免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
    评论“Windows下PyTorch开发环境安装教程”
    暂无“Windows下PyTorch开发环境安装教程”评论...

    RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

    三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

    首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

    据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。