在高版本的Tomcat中,默认的模式都是使用NIO模式,在Tomcat 9中,BIO模式的实现Http11Protocol甚至都已经被删除了。但是了解BIO的工作机制以及其优缺点对学习其他模式有有帮助。只有对比后,你才能知道其他模式的优势在哪里。

Http11Protocol表示阻塞式的HTTP协议的通信,它包含从套接字连接接收、处理、响应客户端的整个过程。它主要包含JIoEndpoint组件和Http11Processor组件。启动时,JIoEndpoint组件将启动某个端口的监听,一个请求到来后将被扔进线程池,线程池进行任务处理,处理过程中将通过协议解析器Http11Processor组件对HTTP协议解析,并且通过适配器Adapter匹配到指定的容器进行处理以及响应客户端。

从连接器组件看Tomcat的线程模型——BIO模式(推荐)

这里我们结合Spring Boot中内嵌的Tomcat来看看连接器的工作原理。建议使用低版本的Spring Boot,高版本的Spring Boot中,都已经使用Tomcat 9了。Tomcat 9已经删除了BIO的实现模式。这边我选择的Spring Boot版本是2.0.0.RELEASE。

要怎么看Connector组件的源代码

我们现在要开始通过Connector组件的源代码来分析连接器组件的工作过程。但是Tomcat的源代码这么多,我们到底要怎么看这个代码呢?之前的文章中总结了Tomcat的启动流程,如下图所示:

从连接器组件看Tomcat的线程模型——BIO模式(推荐)

上面的时序图给我们分析Connector组件的源代码提供了思路:从连接器组件的init方法和start方法开始分析。

Connector组件工作时序图

Spring Boot中内嵌 的Tomcat默认使用的都是NIO模式,想要研究BIO模式还要自己折腾一番。Spring Boot中提供了WebServerFactoryCustomizer接口,我们可以实现这个接口来对Servlet容器工厂进行自定义配置。下面是我自己实现的一个配置类,只是简单地将IO模型设置成了BIO模式,假如你还需要进行其他配置也可以在里面进行额外配置。

@Configuration
public class TomcatConfig {

 @Bean
 public WebServerFactoryCustomizer tomcatCustomer() {
  return new TomcatCustomerConfig();
 }

 public class TomcatCustomerConfig implements WebServerFactoryCustomizer<TomcatServletWebServerFactory> {
  @Override
  public void customize(TomcatServletWebServerFactory factory) {
   if (factory != null) {
    factory.setProtocol("org.apache.coyote.http11.Http11Protocol");
   }
  }
 }
}

经过上面的配置后,Tomcat的连接器组件就会以BIO的模式处理请求。

由于Tomcat整理的代码非常多,想要在一篇文章中分析所有的代码是不太现实的。这边,我梳理了连接器组件工作的时序图,根据这个时序图,我分析了几个关键的代码点,其他细节大家可以根据我的时序图自己看代码,这块代码也不是很复杂。

从连接器组件看Tomcat的线程模型——BIO模式(推荐)

这边的重点代码是在JIoEndpoint的init()方法和start()方法。JIoEndpoint的init()方法主要是做了ServerSocket的端口绑定。具体代码如下:

@Override
public void bind() throws Exception {

 // Initialize thread count defaults for acceptor
 if (acceptorThreadCount == 0) {
  acceptorThreadCount = 1;
 }
 // Initialize maxConnections
 if (getMaxConnections() == 0) {
  // User hasn't set a value - use the default
  setMaxConnections(getMaxThreadsWithExecutor());
 }

 if (serverSocketFactory == null) {
  if (isSSLEnabled()) {
   serverSocketFactory =
    handler.getSslImplementation().getServerSocketFactory(this);
  } else {
   serverSocketFactory = new DefaultServerSocketFactory(this);
  }
 }
 //这边做了ServerSocket的端口绑定
 if (serverSocket == null) {
  try {
   if (getAddress() == null) {
    //没指定具体地址,Tomcat会监听所有地址过来的请求
    serverSocket = serverSocketFactory.createSocket(getPort(),
                getBacklog());
   } else {
    //指定了具体地址,Tomcat只监听这个地址过来的请求
    serverSocket = serverSocketFactory.createSocket(getPort(),
                getBacklog(), getAddress());
   }
  } catch (BindException orig) {
   String msg;
   if (getAddress() == null)
    msg = orig.getMessage() + " <null>:" + getPort();
   else
    msg = orig.getMessage() + " " +
    getAddress().toString() + ":" + getPort();
   BindException be = new BindException(msg);
   be.initCause(orig);
   throw be;
  }
 }

}

再来看JIoEndpoint的start方法。

public void startInternal() throws Exception {

 if (!running) {
  running = true;
  paused = false;

  //创建线程池
  if (getExecutor() == null) {
   createExecutor();
  }
  //创建ConnectionLatch
  initializeConnectionLatch();
  //创建accept线程,这个线程是请求处理的初始线程
  startAcceptorThreads();
  // Start async timeout thread
  Thread timeoutThread = new Thread(new AsyncTimeout(),
           getName() + "-AsyncTimeout");
  timeoutThread.setPriority(threadPriority);
  timeoutThread.setDaemon(true);
  timeoutThread.start();
 }
}

上面的代码中,需要我们重点关注的就是startAcceptorThreads()方法。我们看下这个Accept线程的具体实现。

protected final void startAcceptorThreads() {
 int count = getAcceptorThreadCount();
 acceptors = new Acceptor[count];
 //根据配置,设置一定数量的accept线程
 for (int i = 0; i < count; i++) {
  acceptors[i] = createAcceptor();
  String threadName = getName() + "-Acceptor-" + i;
  acceptors[i].setThreadName(threadName);
  Thread t = new Thread(acceptors[i], threadName);
  t.setPriority(getAcceptorThreadPriority());
  t.setDaemon(getDaemon());
  t.start();
 }
}

Acceptor线程的具体处理实现,重点看run方法。

protected class Acceptor extends AbstractEndpoint.Acceptor {

  @Override
  public void run() {

   int errorDelay = 0;
   // Loop until we receive a shutdown command
   while (running) {
    // Loop if endpoint is paused
    while (paused && running) {
     state = AcceptorState.PAUSED;
     try {
      Thread.sleep(50);
     } catch (InterruptedException e) {
      // Ignore
     }
    }

    if (!running) {
     break;
    }
    state = AcceptorState.RUNNING;

    try {
     //if we have reached max connections, wait
     //达到连接上限,acceptor线程进入等待状态,直到其他线程释放,这是一种简单的通过连接数量进行流量控制的手段
     //通过实现AQS组件实现(LimitLatch),思路是先初始化同步器的最大限制值,然后每接收一个套接字就将计数变量累加1,每关闭一个套接字将计数变量减1
     countUpOrAwaitConnection();
     Socket socket = null;
     try {
      //accept下个socket连接,如果一直没有连接过来这个方法阻塞
      socket = serverSocketFactory.acceptSocket(serverSocket);
     } catch (IOException ioe) {
      //有异常的话释放一个连接数
      countDownConnection();
      errorDelay = handleExceptionWithDelay(errorDelay);
      throw ioe;
     }
     // Successful accept, reset the error delay
     errorDelay = 0;
     //对socket进行适当配置
     if (running && !paused && setSocketOptions(socket)) {
      // 处理这个socket请求,这边也是重点。
      if (!processSocket(socket)) {
       countDownConnection();
       // Close socket right away
       closeSocket(socket);
      }
     } else {
      countDownConnection();
      // Close socket right away
      closeSocket(socket);
     }
    } catch (IOException x) {
     if (running) {
      log.error(sm.getString("endpoint.accept.fail"), x);
     }
    } catch (NullPointerException npe) {
     if (running) {
      log.error(sm.getString("endpoint.accept.fail"), npe);
     }
    } catch (Throwable t) {
     ExceptionUtils.handleThrowable(t);
     log.error(sm.getString("endpoint.accept.fail"), t);
    }
   }
   state = AcceptorState.ENDED;
  }
 }

上面线程处理类中的processSocket(socket)是处理具体请求的方法,这个方法将请求进行了包装然后“扔进”了线程池进行处理。但是这个不是连接器组件的重点,后面会在介绍请求流转时介绍Tomcat怎么处理请求的。

到这边,对Tomcat的BIO模式做了个简单的介绍。其实大家可以看出来,如果对BIO模式进行简化的话就是对传统的ServerSocket的操作,还有就是对请求的处理加上了线程池优化。

BIO模式总结

从连接器组件看Tomcat的线程模型——BIO模式(推荐)

关于上图中的各个组件做下简要说明。

限流组件LimitLatch

LimitLatch组件是一个流量控制组件,目的是为了不让Tomcat组件被大流量冲垮。LimitLatch通过AQS机制实现,这个组件启动时先初始化同步器的最大限制值,然后每接收一个套接字就将计数变量累加1,每关闭一个套接字将计数变量减1。当连接数达到最大值时,Acceptor线程就进入等待状态,不再accept新的socket连接。

需要额外说明的是,当到达最大连接数时(已经LimitLatch组件最大值,acceptor组件阻塞了),操作系统底层还是会继续接收客户端连接,并将请求放入一个队列中(backlog队列)。这个队列是有一个默认长度的,默认值是100。当然,这个值可以通过server.xml的Connector节点的acceptCount属性配置。假如在短时间内,有大量请求过来,连backlog队列都放满了,那么操作系统将拒绝接收后续的连接,返回“connection refused”。

在BIO模式中,LimitLatch组件支持的最大连接数是通过server.xml的Connector节点的maxConnections属性设置的,如果设置成-1,则表示不限制。

接收器组件Acceptor

这个组件的职责非常简单,就是接收Socket连接,对Socket做相应的设置,然后直接丢给线程池处理。accept线程的数量也可以进行配置。

套接字工厂ServerSocketFactory

Acceptor线程在具体accept socket连接时是通过ServerSocketFactory组件获取的。Tomcat中有两个ServerSocketFactory的实现:DefaultServerSocketFactory和JSSESocketFactory。分别对应HTTP和HTTPS的情况。

Tomcat中存在一个变量SSLEnabled用于标识是否使用加密通道,通过对此变量的定义就可以决定使用哪个工厂类,Tomcat提供了外部配置文件供用户自定义。下面的配置中SSLEnabled="true"表示使用加密方式,也就是使用JSSESocketFactory来accept具体的socket连接。

<Connector port="8443" protocol="org.apache.coyote.http11.Http11NioProtocol"
   maxThreads="150" SSLEnabled="true">
 <SSLHostConfig>
  <Certificate certificateKeystoreFile="conf/localhost-rsa.jks"
      type="RSA" />
 </SSLHostConfig>
</Connector>

线程池组件

Tomcat中的线程池是对JDK中线程池的简单改装。在线程创建策略上有点区别:Tomcat中的线程池在线程数大于coreSize后不会立马将线程提交到队列中,而是先判断活动线程数是否已经达到maxSize,只有达到maxSize后才会将线程提交到队列中。

Connector组件的Executor分为两种类型:共享Executor和私有Executor。共享Executor的话是指在Service组件中定义的Executor。

任务定义器SocketProcessor

在将Socket扔进线程池之前我们需要定义任务怎么处理这个Socket。SocketProcessor就是这个任务定义,这个类实现了Runnable接口。

protected class SocketProcessor implements Runnable {
 //进行Debug调试的时候可以从这个类的run方法开始调试
	@Override
 public void run() { 
 	//对套接字进行处理并输出响应
  //对连接限流器LimitLatch减一
  //关闭套接字
 }
}

SocketProcessor的任务主要分为三个:处理套接字并响应客户端,连接数计数器减1,关闭套接字。其中对套接字的处理是最重要也是最复杂的,它包括对底层套接字字节流的读取, HTTP协议请求报文的解析(请求行、请求头部、请求体等信息的解析),根据请求行解析得到的路径去寻找相应虚拟主机上的Web项目资源,根据处理的结果组装好HTTP协议响应报文输出到客户端。

这边暂时先不分析对套接字的具体处理流程,因为这边文章主要还是将连接器的线程模型,涉及的东西太多容易搞混,关于Tomcat对socket的具体处理后面会写文章分析。

总结

标签:
Tomcat线程模型,Tomcat的线程模型BIO模式

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。