前言:
一直是想知道一条SQL语句是怎么被执行的,它执行的顺序是怎样的,然后查看总结各方资料,就有了下面这一篇博文了。
本文将从MySQL总体架构--->查询执行流程--->语句执行顺序来探讨一下其中的知识。
一、MySQL架构总览:
架构最好看图,再配上必要的说明文字。
下图根据参考书籍中一图为原本,再在其上添加上了自己的理解。
从上图中我们可以看到,整个架构分为两层,上层是MySQLD的被称为的‘SQL Layer',下层是各种各样对上提供接口的存储引擎,被称为‘Storage Engine Layer'。其它各个模块和组件,从名字上就可以简单了解到它们的作用,这里就不再累述了。
二、查询执行流程
下面再向前走一些,容我根据自己的认识说一下查询执行的流程是怎样的:
1.连接
1.1客户端发起一条Query请求,监听客户端的‘连接管理模块'接收请求
1.2将请求转发到‘连接进/线程模块'
1.3调用‘用户模块'来进行授权检查
1.4通过检查后,‘连接进/线程模块'从‘线程连接池'中取出空闲的被缓存的连接线程和客户端请求对接,如果失败则创建一个新的连接请求
2.处理
2.1先查询缓存,检查Query语句是否完全匹配,接着再检查是否具有权限,都成功则直接取数据返回
2.2上一步有失败则转交给‘命令解析器',经过词法分析,语法分析后生成解析树
2.3接下来是预处理阶段,处理解析器无法解决的语义,检查权限等,生成新的解析树
2.4再转交给对应的模块处理
2.5如果是SELECT查询还会经由‘查询优化器'做大量的优化,生成执行计划
2.6模块收到请求后,通过‘访问控制模块'检查所连接的用户是否有访问目标表和目标字段的权限
2.7有则调用‘表管理模块',先是查看table cache中是否存在,有则直接对应的表和获取锁,否则重新打开表文件
2.8根据表的meta数据,获取表的存储引擎类型等信息,通过接口调用对应的存储引擎处理
2.9上述过程中产生数据变化的时候,若打开日志功能,则会记录到相应二进制日志文件中
3.结果
3.1Query请求完成后,将结果集返回给‘连接进/线程模块'
3.2返回的也可以是相应的状态标识,如成功或失败等
3.3‘连接进/线程模块'进行后续的清理工作,并继续等待请求或断开与客户端的连接
一图小总结
三、SQL解析顺序
接下来再走一步,让我们看看一条SQL语句的前世今生。
首先看一下示例语句
SELECT DISTINCT < select_list > FROM < left_table > < join_type > JOIN < right_table > ON < join_condition > WHERE < where_condition > GROUP BY < group_by_list > HAVING < having_condition > ORDER BY < order_by_condition > LIMIT < limit_number >
然而它的执行顺序是这样的
FROM <left_table> ON <join_condition> <join_type> JOIN <right_table> WHERE <where_condition> GROUP BY <group_by_list> HAVING <having_condition> SELECT DISTINCT <select_list> ORDER BY <order_by_condition> LIMIT <limit_number>
虽然自己没想到是这样的,不过一看还是很自然和谐的,从哪里获取,不断的过滤条件,要选择一样或不一样的,排好序,那才知道要取前几条呢。
既然如此了,那就让我们一步步来看看其中的细节吧。
准备工作
1.创建测试数据库
create database testQuery
2.创建测试表
CREATE TABLE table1 ( uid VARCHAR(10) NOT NULL, name VARCHAR(10) NOT NULL, PRIMARY KEY(uid) )ENGINE=INNODB DEFAULT CHARSET=UTF8; CREATE TABLE table2 ( oid INT NOT NULL auto_increment, uid VARCHAR(10), PRIMARY KEY(oid) )ENGINE=INNODB DEFAULT CHARSET=UTF8;
3.插入数据
INSERT INTO table1(uid,name) VALUES('aaa','mike'),('bbb','jack'),('ccc','mike'),('ddd','mike'); INSERT INTO table2(uid) VALUES('aaa'),('aaa'),('bbb'),('bbb'),('bbb'),('ccc'),(NULL);
4.最后想要的结果
SELECT a.uid, count(b.oid) AS total FROM table1 AS a LEFT JOIN table2 AS b ON a.uid = b.uid WHERE a. NAME = 'mike' GROUP BY a.uid HAVING count(b.oid) < 2 ORDER BY total DESC LIMIT 1;
!现在开始SQL解析之旅吧!
1. FROM
当涉及多个表的时候,左边表的输出会作为右边表的输入,之后会生成一个虚拟表VT1。
(1-J1)笛卡尔积
计算两个相关联表的笛卡尔积(CROSS JOIN) ,生成虚拟表VT1-J1。
mysql> select * from table1,table2; +-----+------+-----+------+ | uid | name | oid | uid | +-----+------+-----+------+ | aaa | mike | 1 | aaa | | bbb | jack | 1 | aaa | | ccc | mike | 1 | aaa | | ddd | mike | 1 | aaa | | aaa | mike | 2 | aaa | | bbb | jack | 2 | aaa | | ccc | mike | 2 | aaa | | ddd | mike | 2 | aaa | | aaa | mike | 3 | bbb | | bbb | jack | 3 | bbb | | ccc | mike | 3 | bbb | | ddd | mike | 3 | bbb | | aaa | mike | 4 | bbb | | bbb | jack | 4 | bbb | | ccc | mike | 4 | bbb | | ddd | mike | 4 | bbb | | aaa | mike | 5 | bbb | | bbb | jack | 5 | bbb | | ccc | mike | 5 | bbb | | ddd | mike | 5 | bbb | | aaa | mike | 6 | ccc | | bbb | jack | 6 | ccc | | ccc | mike | 6 | ccc | | ddd | mike | 6 | ccc | | aaa | mike | 7 | NULL | | bbb | jack | 7 | NULL | | ccc | mike | 7 | NULL | | ddd | mike | 7 | NULL | +-----+------+-----+------+ rows in set (0.00 sec)
(1-J2)ON过滤
基于虚拟表VT1-J1这一个虚拟表进行过滤,过滤出所有满足ON 谓词条件的列,生成虚拟表VT1-J2。
注意:这里因为语法限制,使用了'WHERE'代替,从中读者也可以感受到两者之间微妙的关系;
mysql> SELECT -> * -> FROM -> table1, -> table2 -> WHERE -> table1.uid = table2.uid -> ; +-----+------+-----+------+ | uid | name | oid | uid | +-----+------+-----+------+ | aaa | mike | 1 | aaa | | aaa | mike | 2 | aaa | | bbb | jack | 3 | bbb | | bbb | jack | 4 | bbb | | bbb | jack | 5 | bbb | | ccc | mike | 6 | ccc | +-----+------+-----+------+ rows in set (0.00 sec)
(1-J3)添加外部列
如果使用了外连接(LEFT,RIGHT,FULL),主表(保留表)中的不符合ON条件的列也会被加入到VT1-J2中,作为外部行,生成虚拟表VT1-J3。
mysql> SELECT -> * -> FROM -> table1 AS a -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid; +-----+------+------+------+ | uid | name | oid | uid | +-----+------+------+------+ | aaa | mike | 1 | aaa | | aaa | mike | 2 | aaa | | bbb | jack | 3 | bbb | | bbb | jack | 4 | bbb | | bbb | jack | 5 | bbb | | ccc | mike | 6 | ccc | | ddd | mike | NULL | NULL | +-----+------+------+------+ rows in set (0.00 sec)
下面从网上找到一张很形象的关于‘SQL JOINS'的解释图,如若侵犯了你的权益,请劳烦告知删除,谢谢。
2. WHERE
对VT1过程中生成的临时表进行过滤,满足WHERE子句的列被插入到VT2表中。
注意:
此时因为分组,不能使用聚合运算;也不能使用SELECT中创建的别名;
与ON的区别:
如果有外部列,ON针对过滤的是关联表,主表(保留表)会返回所有的列;
如果没有添加外部列,两者的效果是一样的;
应用:
对主表的过滤应该放在WHERE;
对于关联表,先条件查询后连接则用ON,先连接后条件查询则用WHERE;
mysql> SELECT -> * -> FROM -> table1 AS a -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid -> WHERE -> a. NAME = 'mike'; +-----+------+------+------+ | uid | name | oid | uid | +-----+------+------+------+ | aaa | mike | 1 | aaa | | aaa | mike | 2 | aaa | | ccc | mike | 6 | ccc | | ddd | mike | NULL | NULL | +-----+------+------+------+ rows in set (0.00 sec)
3. GROUP BY
这个子句会把VT2中生成的表按照GROUP BY中的列进行分组。生成VT3表。
注意:
其后处理过程的语句,如SELECT,HAVING,所用到的列必须包含在GROUP BY中,对于没有出现的,得用聚合函数;
原因:
GROUP BY改变了对表的引用,将其转换为新的引用方式,能够对其进行下一级逻辑操作的列会减少;
我的理解是:
根据分组字段,将具有相同分组字段的记录归并成一条记录,因为每一个分组只能返回一条记录,除非是被过滤掉了,而不在分组字段里面的字段可能会有多个值,多个值是无法放进一条记录的,所以必须通过聚合函数将这些具有多值的列转换成单值;
mysql> SELECT -> * -> FROM -> table1 AS a -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid -> WHERE -> a. NAME = 'mike' -> GROUP BY -> a.uid; +-----+------+------+------+ | uid | name | oid | uid | +-----+------+------+------+ | aaa | mike | 1 | aaa | | ccc | mike | 6 | ccc | | ddd | mike | NULL | NULL | +-----+------+------+------+ rows in set (0.00 sec)
4. HAVING
这个子句对VT3表中的不同的组进行过滤,只作用于分组后的数据,满足HAVING条件的子句被加入到VT4表中。
mysql> SELECT -> * -> FROM -> table1 AS a -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid -> WHERE -> a. NAME = 'mike' -> GROUP BY -> a.uid -> HAVING -> count(b.oid) < 2; +-----+------+------+------+ | uid | name | oid | uid | +-----+------+------+------+ | ccc | mike | 6 | ccc | | ddd | mike | NULL | NULL | +-----+------+------+------+ rows in set (0.00 sec)
5. SELECT
这个子句对SELECT子句中的元素进行处理,生成VT5表。
(5-J1)计算表达式 计算SELECT 子句中的表达式,生成VT5-J1
(5-J2)DISTINCT
寻找VT5-1中的重复列,并删掉,生成VT5-J2
如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT5是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。
mysql> SELECT -> a.uid, -> count(b.oid) AS total -> FROM -> table1 AS a -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid -> WHERE -> a. NAME = 'mike' -> GROUP BY -> a.uid -> HAVING -> count(b.oid) < 2; +-----+-------+ | uid | total | +-----+-------+ | ccc | 1 | | ddd | 0 | +-----+-------+ rows in set (0.00 sec)
6.ORDER BY
从VT5-J2中的表中,根据ORDER BY 子句的条件对结果进行排序,生成VT6表。
注意:
唯一可使用SELECT中别名的地方;
mysql> SELECT -> a.uid, -> count(b.oid) AS total -> FROM -> table1 AS a -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid -> WHERE -> a. NAME = 'mike' -> GROUP BY -> a.uid -> HAVING -> count(b.oid) < 2 -> ORDER BY -> total DESC; +-----+-------+ | uid | total | +-----+-------+ | ccc | 1 | | ddd | 0 | +-----+-------+ rows in set (0.00 sec)
7.LIMIT
LIMIT子句从上一步得到的VT6虚拟表中选出从指定位置开始的指定行数据。
注意:
offset和rows的正负带来的影响;
当偏移量很大时效率是很低的,可以这么做:
采用子查询的方式优化,在子查询里先从索引获取到最大id,然后倒序排,再取N行结果集
采用INNER JOIN优化,JOIN子句里也优先从索引获取ID列表,然后直接关联查询获得最终结果
mysql> SELECT -> a.uid, -> count(b.oid) AS total -> FROM -> table1 AS a -> LEFT JOIN table2 AS b ON a.uid = b.uid -> WHERE -> a. NAME = 'mike' -> GROUP BY -> a.uid -> HAVING -> count(b.oid) < 2 -> ORDER BY -> total DESC -> LIMIT 1; +-----+-------+ | uid | total | +-----+-------+ | ccc | 1 | +-----+-------+ row in set (0.00 sec)
至此SQL的解析之旅就结束了,上图总结一下:
参考书籍:
- 《MySQL性能调优与架构实践》
- 《MySQL技术内幕:SQL编程》
尾声:
嗯,到这里这一次的深入了解之旅就差不多真的结束了,虽然也不是很深入,只是一些东西将其东拼西凑在一起而已,参考了一些以前看过的书籍,大师之笔果然不一样。而且在这过程中也是get到了蛮多东西的,最重要的是更进一步意识到,计算机软件世界的宏大呀~
另由于本人才疏学浅,其中难免存在纰漏错误之处,若发现劳烦告知修改,感谢~
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]