1、cube:生成多维数据集,包含各维度可能组合的交叉表格,使用with 关键字连接 with cube
根据需要使用union all 拼接
判断 某一列的null值来自源数据还是 cube 使用GROUPING关键字
GROUPING([档案号]) = 1 : null值来自cube(代表所有的档案号)
GROUPING([档案号]) = 0 : null值来自源数据
举例:
SELECT * INTO ##GET FROM (SELECT * FROM ( SELECT CASE WHEN (GROUPING([档案号]) = 1) THEN '合计' ELSE [档案号] END AS '档案号', CASE WHEN (GROUPING([系列]) = 1) THEN '合计' ELSE [系列] END AS '系列', CASE WHEN (GROUPING([店长]) = 1) THEN '合计' ELSE [店长] END AS '店长', SUM (剩余次数) AS '总剩余', CASE WHEN (GROUPING([店名]) = 1) THEN '合计' ELSE [店名] END AS '店名' FROM ##PudianCard GROUP BY [档案号], [店名], [店长], [系列] WITH cube HAVING GROUPING([店名]) != 1 AND GROUPING([档案号]) = 1 --AND GROUPING([系列]) = 1 ) AS M UNION ALL (SELECT * FROM ( SELECT CASE WHEN (GROUPING([档案号]) = 1) THEN '合计' ELSE [档案号] END AS '档案号', CASE WHEN (GROUPING([系列]) = 1) THEN '合计' ELSE [系列] END AS '系列', CASE WHEN (GROUPING([店长]) = 1) THEN '合计' ELSE [店长] END AS '店长', SUM (剩余次数) AS '总剩余', CASE WHEN (GROUPING([店名]) = 1) THEN '合计' ELSE [店名] END AS '店名' FROM ##PudianCard GROUP BY [档案号], [店名], [店长], [系列] WITH cube HAVING GROUPING([店名]) != 1 AND GROUPING([店长]) != 1 ) AS P ) UNION ALL (SELECT * FROM ( SELECT CASE WHEN (GROUPING([档案号]) = 1) THEN '合计' ELSE [档案号] END AS '档案号', CASE WHEN (GROUPING([系列]) = 1) THEN '合计' ELSE [系列] END AS '系列', CASE WHEN (GROUPING([店长]) = 1) THEN '合计' ELSE [店长] END AS '店长', SUM (剩余次数) AS '总剩余', CASE WHEN (GROUPING([店名]) = 1) THEN '合计' ELSE [店名] END AS '店名' FROM ##PudianCard GROUP BY [档案号], [店名], [店长], [系列] WITH cube HAVING GROUPING([店名]) != 1 AND GROUPING([店长]) != 1 ) AS W ) UNION ALL (SELECT * FROM ( SELECT CASE WHEN (GROUPING([档案号]) = 1) THEN '合计' ELSE [档案号] END AS '档案号', CASE WHEN (GROUPING([系列]) = 1) THEN '合计' ELSE [系列] END AS '系列', CASE WHEN (GROUPING([店长]) = 1) THEN '合计' ELSE [店长] END AS '店长', SUM (剩余次数) AS '总剩余', CASE WHEN (GROUPING([店名]) = 1) THEN '合计' ELSE [店名] END AS '店名' FROM ##PudianCard GROUP BY [档案号], [店名], [店长], [系列] WITH cube HAVING GROUPING([店名]) = 1 AND GROUPING([店长]) = 1 AND GROUPING([档案号]) = 1 ) AS K ) ) AS T
2、rollup:功能跟cube相似
3、将某一列的数据作为列名,动态加载,使用存储过程,拼接字符串
DECLARE @st nvarchar (MAX) = '';SELECT @st =@st + 'max(case when [系列]=''' + CAST ([系列] AS VARCHAR) + ''' then [总剩余] else null end ) as [' + CAST ([系列] AS VARCHAR) + '],' FROM ##GET GROUP BY [系列]; print @st;
4、根据某一列分组,分别建表
SELECT 'select ROW_NUMBER() over(order by [卡项] desc) as [序号], [会员],[档案号],[卡项],[剩余次数],[员工],[店名] into ' + ltrim([店名]) + ' from 查询 where [店名]=''' + [店名] + ''' ORDER BY [卡项] desc' FROM 查询 GROUP BY [店名]
总结
以上就是本文关于SQLserver中cube:多维数据集实例详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅:MYSQL子查询和嵌套查询优化实例解析、几个比较重要的MySQL变量、ORACLE SQL语句优化技术要点解析等,有什么问题可以随时留言,小编会及时回复大家的。感谢各位对本站的支持!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“SQLserver中cube:多维数据集实例详解”评论...
更新动态
2025年01月01日
2025年01月01日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]