前言
并发编程一直是Golang区别与其他语言的很大优势,也是实际工作场景中经常遇到的。近日笔者在组内分享了我们常见的并发场景,及代码示例,以期望大家能在遇到相同场景下,能快速的想到解决方案,或者是拿这些方案与自己实现的比较,取长补短。现整理出来与大家共享。
简单并发场景
很多时候,我们只想并发的做一件事情,比如测试某个接口的是否支持并发。那么我们就可以这么做:
func RunScenario1() { count := 10 var wg sync.WaitGroup for i := 0; i < count; i++ { wg.Add(1) go func(index int) { defer wg.Done() doSomething(index) }(i) } wg.Wait() }
使用goroutine来实现异步,使用WaitGroup来等待所有goroutine结束。这里要注意的是要正确释放WaitGroup的counter(在goroutine里调用Done()方法)。
但此种方式有个弊端,就是当goroutine的量过多时,很容易消耗完客户端的资源,导致程序表现不佳。
规定时间内的持续并发模型
我们仍然以测试某个后端API接口为例,如果我们想知道这个接口在持续高并发情况下是否有句柄泄露,这种情况该如何测试呢?
这种时候,我们需要能控制时间的高并发模型:
func RunScenario2() { timeout := time.Now().Add(time.Second * time.Duration(10)) n := runtime.NumCPU() waitForAll := make(chan struct{}) done := make(chan struct{}) concurrentCount := make(chan struct{}, n) for i := 0; i < n; i++ { concurrentCount <- struct{}{} } go func() { for time.Now().Before(timeout) { <-done concurrentCount <- struct{}{} } waitForAll <- struct{}{} }() go func() { for { <-concurrentCount go func() { doSomething(rand.Intn(n)) done <- struct{}{} }() } }() <-waitForAll }
上面的代码里,我们通过一个buffered channel来控制并发的数量(concurrentCount),然后另起一个channel来周期性的发起新的任务,而控制的条件就是 time.Now().Before(timeout),这样当超过规定的时间,waitForAll 就会得到信号,而使整个程序退出。
这是一种实现方式,那么还有其他的方式没?我们接着往下看。
基于大数据量的并发模型
前面说的基于时间的并发模型,那如果只知道数据量很大,但是具体结束时间不确定,该怎么办呢?
比如,客户给了个几TB的文件列表,要求把这些文件从存储里删除。再比如,实现个爬虫去爬某些网站的所有内容。
而解决此类问题,最常见的就是使用工作池模式了(Worker Pool)。以删文件为例,我们可以简单这样来处理:
Jobs - 可以从文件列表里读取文件,初始化为任务,然后发给worker
Worker - 拿到任务开始做事
Collector - 收集worker处理后的结果
Worker Pool - 控制并发的数量
虽然这只是个简单Worker Pool模型,但已经能满足我们的需求:
func RunScenario3() { numOfConcurrency := runtime.NumCPU() taskTool := 10 jobs := make(chan int, taskTool) results := make(chan int, taskTool) var wg sync.WaitGroup // workExample workExampleFunc := func(id int, jobs <-chan int, results chan<- int, wg *sync.WaitGroup) { defer wg.Done() for job := range jobs { res := job * 2 fmt.Printf("Worker %d do things, produce result %d \n", id, res) time.Sleep(time.Millisecond * time.Duration(100)) results <- res } } for i := 0; i < numOfConcurrency; i++ { wg.Add(1) go workExampleFunc(i, jobs, results, &wg) } totalTasks := 100 // 本例就要从文件列表里读取 wg.Add(1) go func() { defer wg.Done() for i := 0; i < totalTasks; i++ { n := <-results fmt.Printf("Got results %d \n", n) } close(results) }() for i := 0; i < totalTasks; i++ { jobs <- i } close(jobs) wg.Wait() }
在Go里,分发任务,收集结果,我们可以都交给Channel来实现。从实现上更加的简洁。
仔细看会发现,本模型也是适用于按时间来控制并发。只要把totalTask的遍历换成时间控制就好了。
等待异步任务执行结果
goroutine和channel的组合在实际编程时经常会用到,而加上Select更是无往而不利。
func RunScenario4() { sth := make(chan string) result := make(chan string) go func() { id := rand.Intn(100) for { sth <- doSomething(id) } }() go func() { for { result <- takeSomthing(<-sth) } }() select { case c := <-result: fmt.Printf("Got result %s ", c) case <-time.After(time.Duration(30 * time.Second)): fmt.Errorf("指定时间内都没有得到结果") } }
在select的case情况,加上time.After()模型可以让我们在一定时间范围内等待异步任务结果,防止程序卡死。
定时反馈异步任务结果
上面我们说到持续的压测某后端API,但并未实时收集结果。而很多时候对于性能测试场景,实时的统计吞吐率,成功率是非常有必要的。
func RunScenario5() { concurrencyCount := runtime.NumCPU() for i := 0; i < concurrencyCount; i++ { go func(index int) { for { doUploadMock() } }(i) } t := time.NewTicker(time.Second) for { select { case <-t.C: // 计算并打印实时数据 } } }
这种场景就需要使用到Ticker,且上面的Example模型还能控制并发数量,也是非常实用的方式。
知识点总结
上面我们共提到了五种并发模式:
- 简单并发模型
- 规定时间内的持续并发模型
- 基于大数据量的持续并发模型
- 等待异步任务结果模型
- 定时反馈异步任务结果模型
归纳下来其核心就是使用了Go的几个知识点:Goroutine, Channel, Select, Time, Timer/Ticker, WaitGroup. 若是对这些不清楚,可以自行Google之。
另完整的Example 代码可以参考这里:https://github.com/jichangjun/golearn/blob/master/src/carlji.com/experiments/concurrency/main.go
使用方式: go run main.go <场景>
比如 :
参考文档
https://github.com/golang/go/wiki/LearnConcurrency
这篇是Google官方推荐学习Go并发的资料,从初学者到进阶,内容非常丰富,且权威。
Contact me ?
Email: jinsdu@outlook.com
Blog: http://www.cnblogs.com/jinsdu/
Github: https://github.com/CarlJi
Go并发
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]