本文实例讲述了Go学习笔记之反射用法。分享给大家供大家参考,具体如下:
一、类型(Type)
反射(reflect)让我们能在运行期探知对象的类型信息和内存结构,这从一定程度上弥(mi)补了静态语言在动态行为上的不足。同时,反射还是实现元编程的重要手段。
和 C 数据结构一样,Go 对象头部并没有类型指针,通过其自身是无法在运行期获知任何类型相关信息的。反射操作所需要的全部信息都源自接口变量。接口变量除存储自身类型外,还会保存实际对象的类型数据。
func TypeOf(i interface{}) Type
func ValueOf(i interface{}) Value
这 两个 反射入口函数,会将任何传入的对象转换为接口类型。
在面对类型时,需要区分 Type
和 Kind
。前者表示真实类型(静态类型),后者表示其基础结构(底层类型)类别 -- 基类型。
复制代码 代码如下:type X int
func main() {
var a X = 100
t := reflect.TypeOf(a)
fmt.Println(t)
fmt.Println(t.Name(), t.Kind())
}
输出:
X int
所以在类型判断上,须选择正确的方式
复制代码 代码如下:type X int
type Y int
func main() {
var a, b X = 100, 200
var c Y = 300
ta, tb, tc := reflect.TypeOf(a), reflect.TypeOf(b), reflect.TypeOf(c)
fmt.Println(ta == tb, ta == tc)
fmt.Println(ta.Kind() == tc.Kind())
}
除通过实际对象获取类型外,也可直接构造一些基础复合类型。
复制代码 代码如下:func main() {
a := reflect.ArrayOf(10, reflect.TypeOf(byte(0)))
m := reflect.MapOf(reflect.TypeOf(""), reflect.TypeOf(0))
fmt.Println(a, m)
}
输出:
[10]uint8 map[string]int
传入对象 应区分 基类型 和 指针类型,因为它们并不属于同一类型。
复制代码 代码如下:func main() {
x := 100
tx, tp := reflect.TypeOf(x), reflect.TypeOf(&x)
fmt.Println(tx, tp, tx == tp)
fmt.Println(tx.Kind(), tp.Kind())
fmt.Println(tx == tp.Elem())
}
输出:
int *int false int ptr true
方法 Elem() 返回 指针、数组、切片、字典(值)或 通道的 基类型。
复制代码 代码如下:func main() {
fmt.Println(reflect.TypeOf(map[string]int{}).Elem())
fmt.Println(reflect.TypeOf([]int32{}).Elem())
}
输出:
int int32
只有在获取 结构体指针 的 基类型 后,才能遍历它的字段。
复制代码 代码如下:
type user struct {
name string
age int
}
type manager struct {
user
title string
}
func main() {
var m manager
t := reflect.TypeOf(&m)
if t.Kind() == reflect.Ptr {
t = t.Elem()
}
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
fmt.Println(f.Name, f.Type, f.Offset)
if f.Anonymous { // 输出匿名字段结构
for x := 0; x < f.Type.NumField(); x++ {
af := f.Type.Field(x)
fmt.Println(" ", af.Name, af.Type)
}
}
}
}
输出:
user main.user 0 name string age int title string 24
对于匿名字段,可用多级索引(按照定义顺序)直接访问。
复制代码 代码如下:type user struct {
name string
age int
}
type manager struct {
user
title string
}
func main() {
var m manager
t := reflect.TypeOf(m)
name, _ := t.FieldByName("name") // 按名称查找
fmt.Println(name.Name, name.Type)
age := t.FieldByIndex([]int{0, 1}) // 按多级索引查找
fmt.Println(age.Name, age.Type)
}
输出:
name string age int
FieldByName() 不支持多级名称,如有同名遮蔽,须通过匿名字段二次获取。
同样地,输出方法集时,一样区分 基类型 和 指针类型。
复制代码 代码如下:type A int
type B struct {
A
}
func (A) av() {}
func (*A) ap() {}
func (B) bv() {}
func (*B) bp() {}
func main() {
var b B
t := reflect.TypeOf(&b)
s := []reflect.Type{t, t.Elem()}
for _, t2 := range s {
fmt.Println(t2, ":")
for i := 0; i < t2.NumMethod(); i++ {
fmt.Println(" ", t2.Method(i))
}
}
}
输出:
*main.B : {ap main func(*main.B) <func(*main.B) Value> 0} {av main func(*main.B) <func(*main.B) Value> 1} {bp main func(*main.B) <func(*main.B) Value> 2} {bv main func(*main.B) <func(*main.B) Value> 3} main.B : {av main func(*main.B) <func(*main.B) Value> 0} {bv main func(*main.B) <func(*main.B) Value> 1}
有一点和想象的不同,反射能探知当前包或外包的非导出结构成员。
复制代码 代码如下:import (
"net/http"
"reflect"
"fmt"
)
func main() {
var s http.Server
t := reflect.TypeOf(s)
for i := 0; i < t.NumField(); i++ {
fmt.Println(t.Field(i).Name)
}
}
输出:
Addr Handler ReadTimeout WriteTimeout TLSConfig MaxHeaderBytes TLSNextProto ConnState ErrorLog disableKeepAlives nextProtoOnce nextProtoErr
相对 reflect 而言,当前包 和 外包 都是“外包”。
可用反射提取 struct tag,还能自动分解。其常用于 ORM 映射,或数据格式验证。
复制代码 代码如下:
type user struct {
name string `field:"name" type:"varchar(50)"`
age int `field:"age" type:"int"`
}
func main() {
var u user
t := reflect.TypeOf(u)
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
fmt.Printf("%s: %s %s\n", f.Name, f.Tag.Get("field"), f.Tag.Get("type"))
}
}
输出:
name: name varchar(50) age: age int
辅助判断方法 Implements()、ConvertibleTo、AssignableTo() 都是运行期进行 动态调用 和 赋值 所必需的。
复制代码 代码如下:type X int
func (X) String() string {
return ""
}
func main() {
var a X
t := reflect.TypeOf(a)
// Implements 不能直接使用类型作为参数,导致这种用法非常别扭
st := reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
fmt.Println(t.Implements(st))
it := reflect.TypeOf(0)
fmt.Println(t.ConvertibleTo(it))
fmt.Println(t.AssignableTo(st), t.AssignableTo(it))
}
输出:
true true true false
二、值(Value)
和 Type 获取类型信息不同,Value 专注于对象实例数据读写。
在前面章节曾提到过,接口变量会复制对象,且是 unaddressable 的,所以要想修改目标对象,就必须使用指针。
复制代码 代码如下:func main() {
a := 100
va, vp := reflect.ValueOf(a), reflect.ValueOf(&a).Elem()
fmt.Println(va.CanAddr(), va.CanSet())
fmt.Println(vp.CanAddr(), vp.CanSet())
}
输出:
false false true true
就算传入指针,一样需要通过 Elem()
获取目标对象。因为被接口存储的指针本身是不能寻址和进行设置操作的。
注意,不能对非导出字段直接进行设置操作,无论是当前包还是外包。
复制代码 代码如下:type User struct {
Name string
code int
}
func main() {
p := new(User)
v := reflect.ValueOf(p).Elem()
name := v.FieldByName("Name")
code := v.FieldByName("code")
fmt.Printf("name: canaddr = %v, canset = %v\n", name.CanAddr(), name.CanSet())
fmt.Printf("code: canaddr = %v, canset = %v\n", code.CanAddr(), code.CanSet())
if name.CanSet() {
name.SetString("Tom")
}
if code.CanAddr() {
*(*int)(unsafe.Pointer(code.UnsafeAddr())) = 100
}
fmt.Printf("%+v\n", *p)
}
输出:
name: canaddr = true, canset = true code: canaddr = true, canset = false {Name:Tom code:100}
Value.Pointer 和 Value.Int 等方法类型,将 Value.data 存储的数据转换为指针,目标必须是指针类型。而 UnsafeAddr 返回任何 CanAddr Value.data 地址(相当于 & 取地址操作),比如 Elem() 后的 Value,以及字段成员地址。
以结构体里的指针类型字段为例,Pointer 返回该字段所保存的地址,而 UnsafeAddr 返回该字段自身的地址(结构对象地址 + 偏移量)。
可通过 Interface 方法进行类型 推荐 和 转换。
复制代码 代码如下:func main() {
type user struct {
Name string
Age int
}
u := user{
"q.yuhen",
60,
}
v := reflect.ValueOf(&u)
if !v.CanInterface() {
println("CanInterface: fail.")
return
}
p, ok := v.Interface().(*user)
if !ok {
println("Interface: fail.")
return
}
p.Age++
fmt.Printf("%+v\n", u)
}
输出:
{Name:q.yuhen Age:61}
也可以直接使用 Value.Int、Bool 等方法进行类型转换,但失败时会引发 pani,且不支持 ok-idiom。
复合类型对象设置示例:
复制代码 代码如下:func main() {
c := make(chan int, 4)
v := reflect.ValueOf(c)
if v.TrySend(reflect.ValueOf(100)) {
fmt.Println(v.TryRecv())
}
}
输出:
100 true
接口有两种 nil 状态,这一直是个潜在麻烦。解决方法是用 IsNil() 判断值是否为 nil。
复制代码 代码如下:func main() {
var a interface{} = nil
var b interface{} = (*int)(nil)
fmt.Println(a == nil)
fmt.Println(b == nil, reflect.ValueOf(b).IsNil())
}
输出:
true false true
也可用 unsafe 转换后直接判断 iface.data 是否为零值。
复制代码 代码如下:func main() {
var b interface{} = (*int)(nil)
iface := (*[2]uintptr)(unsafe.Pointer(&b))
fmt.Println(iface, iface[1] == 0)
}
输出:
&[712160 0] true
让人很无奈的是,Value 里的某些方法并未实现 ok-idom 或返回 error,所以得自行判断返回的是否为 Zero Value。
复制代码 代码如下:func main() {
v := reflect.ValueOf(struct {name string}{})
println(v.FieldByName("name").IsValid())
println(v.FieldByName("xxx").IsValid())
}
输出:
true false
三、方法
动态调用方法,谈不上有多麻烦。只须按 In 列表准备好所需参数即可。
复制代码 代码如下:type X struct {}
func (X) Test(x, y int) (int, error) {
return x + y, fmt.Errorf("err: %d", x + y)
}
func main() {
var a X
v := reflect.ValueOf(&a)
m := v.MethodByName("Test")
in := []reflect.Value{
reflect.ValueOf(1),
reflect.ValueOf(2),
}
out := m.Call(in)
for _, v := range out {
fmt.Println(v)
}
}
输出:
3 err: 3
对于变参来说,用 CallSlice() 要更方便一些。
复制代码 代码如下:type X struct {}
func (X) Format(s string, a ...interface{}) string {
return fmt.Sprintf(s, a...)
}
func main() {
var a X
v := reflect.ValueOf(&a)
m := v.MethodByName("Format")
out := m.Call([]reflect.Value{
reflect.ValueOf("%s = %d"), // 所有参数都须处理
reflect.ValueOf("x"),
reflect.ValueOf(100),
})
fmt.Println(out)
out = m.CallSlice([]reflect.Value{
reflect.ValueOf("%s = %d"),
reflect.ValueOf([]interface{}{"x", 100}),
})
fmt.Println(out)
}
输出:
[x = 100] [x = 100]
无法调用非导出方法,甚至无法获取有效地址。
四、构建
反射库提供了内置函数 make()
和 new()
的对应操作,其中最有意思的就是 MakeFunc()
。可用它实现通用模板,适应不同数据类型。
复制代码 代码如下:// 通用算法函数
func add(args []reflect.Value) (results []reflect.Value) {
if len(args) == 0 {
return nil
}
var ret reflect.Value
switch args[0].Kind() {
case reflect.Int:
n := 0
for _, a := range args {
n += int(a.Int())
}
ret = reflect.ValueOf(n)
case reflect.String:
ss := make([]string, 0, len(args))
for _, s := range args {
ss = append(ss, s.String())
}
ret = reflect.ValueOf(strings.Join(ss, ""))
}
results = append(results, ret)
return
}
// 将函数指针参数指向通用算法函数
func makeAdd(fptr interface{}) {
fn := reflect.ValueOf(fptr).Elem()
v := reflect.MakeFunc(fn.Type(), add) // 这是关键
fn.Set(v) // 指向通用算法函数
}
func main() {
var intAdd func(x, y int) int
var strAdd func(a, b string) string
makeAdd(&intAdd)
makeAdd(&strAdd)
println(intAdd(100, 200))
println(strAdd("hello, ", "world!"))
}
输出:
300 hello, world!
如果语言支持泛型,自然不需要这么折腾
希望本文所述对大家Go语言程序设计有所帮助。
Go语言,反射
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]