之前有聊过 golang 的协程,我发觉似乎还很理论,特别是在并发安全上,所以特结合网上的一些例子,来试验下go routine中 的 channel, select, context 的妙用。

场景-微服务调用

我们用 gin(一个web框架) 作为处理请求的工具,需求是这样的:

一个请求 X 会去并行调用 A, B, C 三个方法,并把三个方法返回的结果加起来作为 X 请求的 Response。

但是我们这个 Response 是有时间要求的(不能超过3秒的响应时间),可能 A, B, C 中任意一个或两个,处理逻辑十分复杂,或者数据量超大,导致处理时间超出预期,那么我们就马上切断,并返回已经拿到的任意个返回结果之和。

我们先来定义主函数:

func main() {
 r := gin.New()
 r.GET("/calculate", calHandler)
 http.ListenAndServe(":8008", r)
}

非常简单,普通的请求接受和 handler 定义。其中 calHandler 是我们用来处理请求的函数。

分别定义三个假的微服务,其中第三个将会是我们超时的哪位~

func microService1() int {
 time.Sleep(1*time.Second)
 return 1
}

func microService2() int {
 time.Sleep(2*time.Second)
 return 2
}

func microService3() int {
 time.Sleep(10*time.Second)
 return 3
}

接下来,我们看看 calHandler 里到底是什么

func calHandler(c *gin.Context) {
 ...
}

要点1--并发调用

直接用 go 就好了嘛~

所以一开始我们可能就这么写:

go microService1()
go microService2()
go microService3()

很简单有没有,但是等等,说好的返回值我怎么接呢?

为了能够并行地接受处理结果,我们很容易想到用 channel 去接。

所以我们把调用服务改成这样:

var resChan = make(chan int, 3) // 因为有3个结果,所以我们创建一个可以容纳3个值的 int channel。
go func() {
 resChan <- microService1()
}()

go func() {
 resChan <- microService2()
}()

go func() {
 resChan <- microService3()
}()

有东西接,那也要有方法去算,所以我们加一个一直循环拿 resChan 中结果并计算的方法:

var resContainer, sum int
for {
 resContainer = <-resChan
 sum += resContainer
}

这样一来我们就有一个 sum 来计算每次从 resChan 中拿出的结果了。

要点2--超时信号

还没结束,说好的超时处理呢?

为了实现超时处理,我们需要引入一个东西,就是 context,什么是 context "htmlcode">

ctx, _ := context.WithTimeout(c, 3*time.Second) //定义一个超时的 context

只要时间到了,我们就能用 ctx.Done() 获取到一个超时的 channel(通知),然后其他用到这个 ctx 的地方也会停掉,并释放 ctx。

一般来说,ctx.Done() 是结合 select 使用的。

所以我们又需要一个循环来监听 ctx.Done()

for {
 select {
 case <- ctx.Done():
  // 返回结果
}

现在我们有两个 for 了,是不是能够合并下?

for {
 select {
 case resContainer = <-resChan:
  sum += resContainer
  fmt.Println("add", resContainer)
 case <- ctx.Done():
  fmt.Println("result:", sum)
  return
 }
}

诶嘿,看上去不错。

不过我们怎么在正常完成微服务调用的时候输出结果呢?

看来我们还需要一个 flag

var count int
for {
 select {
 case resContainer = <-resChan:
  sum += resContainer
  count ++
  fmt.Println("add", resContainer)
  if count > 2 {
   fmt.Println("result:", sum)
   return
  }
 case <- ctx.Done():
  fmt.Println("timeout result:", sum)
  return
 }
}

我们加入一个计数器,因为我们只是调用3次微服务,所以当 count 大于2的时候,我们就应该结束并输出结果了。

要点3--并发中的等待

上面的计时器是一种偷懒的方法,因为我们知道了调用微服务的次数,如果我们并不知道,或者之后还要添加呢?
手动每次改 count 的判断阈值会不会太沙雕了?这时候我们就要加入 sync 包了。
我们将会使用的 sync 的一个特性是 WaitGroup。它的作用是等待一组协程运行完毕后,执行接下去的步骤。

我们来改下之前微服务调用的代码块:

var success = make(chan int, 1) // 成功的通道标识
wg := sync.WaitGroup{} // 创建一个 waitGroup 组
wg.Add(3) // 我们往组里加3个标识,因为我们要运行3个任务
go func() {
 resChan <- microService1()
 wg.Done() // 完成一个,Done()一个
}()

go func() {
 resChan <- microService2()
 wg.Done()
}()

go func() {
 resChan <- microService3()
 wg.Done()
}()
wg.Wait() // 直到我们前面三个标识都被 Done 了,否则程序一直会阻塞在这里
success <- 1 // 我们发送一个成功信号到通道中

既然我们有了 success 这个信号,那么再把它加入到监控 for 循环中,并做些修改,删除原来 count 判断的部分。

go func() {
 for {
  select {
  case resContainer = <-resChan:
   sum += resContainer
   fmt.Println("add", resContainer)
  case <- success:
   fmt.Println("result:", sum)
   return
  case <- ctx.Done():
   fmt.Println("result:", sum)
   return
  }
 }
}()

三个 case,分工明确,一个用来拿服务输出的结果并计算,一个用来做最终的完成输出,一个是超时输出。
同时我们将这个循环监听,也作为协程运行。

至此,所有的主要代码都完成了。下面是完全版

package main

import (
 "context"
 "fmt"
 "net/http"
 "sync"
 "time"

 "github.com/gin-gonic/gin"
)

// 一个请求会触发调用三个服务,每个服务输出一个 int,
// 请求要求结果为三个服务输出 int 之和
// 请求返回时间不超过3秒,大于3秒只输出已经获得的 int 之和
func calHandler(c *gin.Context) {
 var resContainer, sum int
 var success, resChan = make(chan int), make(chan int, 3)
 ctx, _ := context.WithTimeout(c, 3*time.Second)

 go func() {
  for {
   select {
   case resContainer = <-resChan:
    sum += resContainer
    fmt.Println("add", resContainer)
   case <- success:
    fmt.Println("result:", sum)
    return
   case <- ctx.Done():
    fmt.Println("result:", sum)
    return
   }
  }
 }()

 wg := sync.WaitGroup{}
 wg.Add(3)
 go func() {
  resChan <- microService1()
  wg.Done()
 }()

 go func() {
  resChan <- microService2()
  wg.Done()
 }()

 go func() {
  resChan <- microService3()
  wg.Done()
 }()
 wg.Wait()
 success <- 1

 return
}

func main() {
 r := gin.New()
 r.GET("/calculate", calHandler)
 http.ListenAndServe(":8008", r)
}

func microService1() int {
 time.Sleep(1*time.Second)
 return 1
}

func microService2() int {
 time.Sleep(2*time.Second)
 return 2
}

func microService3() int {
 time.Sleep(10*time.Second)
 return 3
}

上面的程序只是简单描述了一个调用其他微服务超时的处理场景。

实际过程中还需要加很多很多调料,才能保证接口的对外完整性。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
Go,并发调用超时处理,Go,并发调用

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“Go并发调用的超时处理的方法”
暂无“Go并发调用的超时处理的方法”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。