背景
最近在开发一个功能时,需要通过 http 协议上报大量的日志内容,但是在 Go 标准库里的 http client 的 API 是这样的:
http.NewRequest(method, url string, body io.Reader)
body 是通过 io.Reader
接口来传递,并没有暴露一个 io.Writer
接口来提供写入的办法,先来看看正常情况下怎么写入一个 body
,示例:
需要先把要写
buf := bytes.NewBuffer([]byte("hello")) http.Post("localhost:8099/report","text/pain",buf)
入的数据放在 Buffer
中,放内存缓存着,但是我需要写入 大量
的数据,如果都放内存里肯定要 OOM 了,http client 并没有提供 流式写入
的方法,我这么大的数据量直接用 Buffer
肯定是不行的,最后在 google 了一番之后找到了解决办法。
使用 io.pipe
调用 io.pipe()
方法会返回 Reader
和 Writer
接口实现对象,通过 Writer
写数据, Reader
就可以读到,利用这个特性就可以实现流式的写入,开一个协程来写,然后把 Reader
传递到方法中,就可以实现 http client body 的流式写入了。
代码示例:
pr, rw := io.Pipe() // 开协程写入大量数据 go func(){ for i := 0; i < 100000; i++ { rw.Write([]byte(fmt.Sprintf("line:%d\r\n", i))) } rw.Close() }() // 传递Reader http.Post("localhost:8099/report","text/pain",buf)
源码阅读 目的
了解 go 中 http client 对于 body 的传输是如何处理的。
开始
在构建 Request 的时候,会断言 body 参数的类型,当类型为 *bytes.Buffer
、 *bytes.Reader
、 *strings.Reader
的时候,可以直接通过 Len()
方法取出长度,用于 Content-Length
请求头,相关代码net/http/request.go#L872-L914 :
if body != nil { switch v := body.(type) { case *bytes.Buffer: req.ContentLength = int64(v.Len()) buf := v.Bytes() req.GetBody = func() (io.ReadCloser, error) { r := bytes.NewReader(buf) return ioutil.NopCloser(r), nil } case *bytes.Reader: req.ContentLength = int64(v.Len()) snapshot := *v req.GetBody = func() (io.ReadCloser, error) { r := snapshot return ioutil.NopCloser(&r), nil } case *strings.Reader: req.ContentLength = int64(v.Len()) snapshot := *v req.GetBody = func() (io.ReadCloser, error) { r := snapshot return ioutil.NopCloser(&r), nil } default: } if req.GetBody != nil && req.ContentLength == 0 { req.Body = NoBody req.GetBody = func() (io.ReadCloser, error) { return NoBody, nil } } }
在链接建立的时候,会通过 body
和上一步中得到的 ContentLength
来进行判断,如果 body!=nil
并且 ContentLength==0
时,可能就会启用 Chunked
编码进行传输,相关代码 net/http/transfer.go#L82-L96 :
case *Request: if rr.ContentLength != 0 && rr.Body == nil { return nil, fmt.Errorf("http: Request.ContentLength=%d with nil Body", rr.ContentLength) } t.Method = valueOrDefault(rr.Method, "GET") t.Close = rr.Close t.TransferEncoding = rr.TransferEncoding t.Header = rr.Header t.Trailer = rr.Trailer t.Body = rr.Body t.BodyCloser = rr.Body // 当body为非nil,并且ContentLength==0时,这里返回-1 t.ContentLength = rr.outgoingLength() // TransferEncoding没有手动设置,并且请求方法为PUT、POST、PATCH时,会启用chunked编码传输 if t.ContentLength < 0 && len(t.TransferEncoding) == 0 && t.shouldSendChunkedRequestBody() { t.TransferEncoding = []string{"chunked"} }
验证(一)
按照对源码的理解,可以得知在使用 io.pipe()
方法进行流式传输时,会使用 chunked
编码进行传输,通过以下代码进行验证:
服务端
func main(){ http.HandleFunc("/report", func(writer http.ResponseWriter, request *http.Request) { }) http.ListenAndServe(":8099", nil) }
客户端
func main(){ pr, rw := io.Pipe() go func(){ for i := 0; i < 100; i++ { rw.Write([]byte(fmt.Sprintf("line:%d\r\n", i))) } rw.Close() }() http.Post("localhost:8099/report","text/pain",buf) }
先运行服务端,然后运行客户端,并且使用 WireShake
进行抓包分析,结果如下:
可以看到和预想的结果一样。
验证(二)
在数据量大的时候 chunked
编码会增加额外的开销,包括编解码和额外的报文开销,能不能不用 chunked
编码来进行 流式传输
呢?通过源码可以得知,当 ContentLength
不为 0 时,如果能预先计算出待传输的 body size
,是不是就能避免 chunked
编码呢?思路就到这,接着就是写代码验证:
服务端
func main(){ http.HandleFunc("/report", func(writer http.ResponseWriter, request *http.Request) { }) http.ListenAndServe(":8099", nil) }
客户端
count := 100 line := []byte("line\r\n") pr, rw := io.Pipe() go func() { for i := 0; i < count; i++ { rw.Write(line) } rw.Close() }() // 构造request对象 request, err := http.NewRequest("POST", "http://localhost:8099/report", pr) if err != nil { log.Fatal(err) } // 提前计算出ContentLength request.ContentLength = int64(len(line) * count) // 发起请求 http.DefaultClient.Do(request)
抓包结果:
可以看到确实直接使用的 Content-Length
进行传输,没有进行 chunked
编码了。
总结
本文的目的主要是记录 go 语言中 http client
如何进行流式的写入,并通过阅读源码了解 http client
内部对 body 的写入是如何进行处理的,通过两个验证可以得知,如果能提前计算出 ContentLength
并且对性能要求比较苛刻的情况下,可以通过手动设置 ContentLength
来优化性能。
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]