介绍
对于绘制某些类型的数据来说,瀑布图是一种十分有用的工具。不足为奇的是,我们可以使用Pandas和matplotlib创建一个可重复的瀑布图。
在往下进行之前,我想先告诉大家我指代的是哪种类型的图表。我将建立一个维基百科文章中描述的2D瀑布图。
这种图表的一个典型的用处是显示开始值和结束值之间起“桥梁”作用的+和-的值。因为这个原因,财务人员有时会将其称为一个桥梁。跟我之前所采用的其他例子相似,这种类型的绘图在Excel中不容易生成,当然肯定有生成它的方法,但是不容易记住。
关于瀑布图需要记住的关键点是:它本质上是一个堆叠在一起的条形图,不过特殊的一点是,它有一个空白底栏,所以顶部栏会“悬浮”在空中。那么,让我们开始吧。
创建图表
首先,执行标准的输入,并确保IPython能显示matplot图。
import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline
设置我们想画出瀑布图的数据,并将其加载到数据帧(DataFrame)中。
数据需要以你的起始值开始,但是你需要给出最终的总数。我们将在下面计算它。
index = ['sales','returns','credit fees','rebates','late charges','shipping'] data = {'amount': [350000,-30000,-7500,-25000,95000,-7000]} trans = pd.DataFrame(data=data,index=index)
我使用了IPython中便捷的display函数来更简单地控制我要显示的内容。
from IPython.display import display display(trans)
瀑布图的最大技巧是计算出底部堆叠条形图的内容。有关这一点,我从stackoverflow上的讨论中学到很多。
首先,我们得到累积和。
display(trans.amount.cumsum()) sales 350000 returns 320000 credit fees 312500 rebates 287500 late charges 382500 shipping 375500 Name: amount, dtype: int64
这看起来不错,但我们需要将一个地方的数据转移到右边。
blank=trans.amount.cumsum().shift(1).fillna(0) display(blank) sales 0 returns 350000 credit fees 320000 rebates 312500 late charges 287500 shipping 382500 Name: amount, dtype: float64
我们需要向trans和blank数据帧中添加一个净总量。
total = trans.sum().amount trans.loc["net"] = total blank.loc["net"] = total display(trans) display(blank)
sales 0 returns 350000 credit fees 320000 rebates 312500 late charges 287500 shipping 382500 net 375500 Name: amount, dtype: float64
创建我们用来显示变化的步骤。
step = blank.reset_index(drop=True).repeat(3).shift(-1) step[1::3] = np.nan display(step) 0 0 0 NaN 0 350000 1 350000 1 NaN 1 320000 2 320000 2 NaN 2 312500 3 312500 3 NaN 3 287500 4 287500 4 NaN 4 382500 5 382500 5 NaN 5 375500 6 375500 6 NaN 6 NaN Name: amount, dtype: float64
对于“net”行,为了不使堆叠加倍,我们需要确保blank值为0。
blank.loc["net"] = 0
然后,将其画图,看一下什么样子。
my_plot = trans.plot(kind='bar', stacked=True, bottom=blank,legend=None, title="2014 Sales Waterfall") my_plot.plot(step.index, step.values,'k')
看起来相当不错,但是让我们试着格式化Y轴,以使其更具有可读性。为此,我们使用FuncFormatter和一些Python2.7+的语法来截断小数并向格式中添加一个逗号。
def money(x, pos): 'The two args are the value and tick position' return "${:,.0f}".format(x) from matplotlib.ticker import FuncFormatter formatter = FuncFormatter(money)
然后,将其组合在一起。
my_plot = trans.plot(kind='bar', stacked=True, bottom=blank,legend=None, title="2014 Sales Waterfall") my_plot.plot(step.index, step.values,'k') my_plot.set_xlabel("Transaction Types") my_plot.yaxis.set_major_formatter(formatter)
完整脚本
基本图形能够正常工作,但是我想添加一些标签,并做一些小的格式修改。下面是我最终的脚本:
import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter #Use python 2.7+ syntax to format currency def money(x, pos): 'The two args are the value and tick position' return "${:,.0f}".format(x) formatter = FuncFormatter(money) #Data to plot. Do not include a total, it will be calculated index = ['sales','returns','credit fees','rebates','late charges','shipping'] data = {'amount': [350000,-30000,-7500,-25000,95000,-7000]} #Store data and create a blank series to use for the waterfall trans = pd.DataFrame(data=data,index=index) blank = trans.amount.cumsum().shift(1).fillna(0) #Get the net total number for the final element in the waterfall total = trans.sum().amount trans.loc["net"]= total blank.loc["net"] = total #The steps graphically show the levels as well as used for label placement step = blank.reset_index(drop=True).repeat(3).shift(-1) step[1::3] = np.nan #When plotting the last element, we want to show the full bar, #Set the blank to 0 blank.loc["net"] = 0 #Plot and label my_plot = trans.plot(kind='bar', stacked=True, bottom=blank,legend=None, figsize=(10, 5), title="2014 Sales Waterfall") my_plot.plot(step.index, step.values,'k') my_plot.set_xlabel("Transaction Types") #Format the axis for dollars my_plot.yaxis.set_major_formatter(formatter) #Get the y-axis position for the labels y_height = trans.amount.cumsum().shift(1).fillna(0) #Get an offset so labels don't sit right on top of the bar max = trans.max() neg_offset = max / 25 pos_offset = max / 50 plot_offset = int(max / 15) #Start label loop loop = 0 for index, row in trans.iterrows(): # For the last item in the list, we don't want to double count if row['amount'] == total: y = y_height[loop] else: y = y_height[loop] + row['amount'] # Determine if we want a neg or pos offset if row['amount'] > 0: y += pos_offset else: y -= neg_offset my_plot.annotate("{:,.0f}".format(row['amount']),(loop,y),ha="center") loop+=1 #Scale up the y axis so there is room for the labels my_plot.set_ylim(0,blank.max()+int(plot_offset)) #Rotate the labels my_plot.set_xticklabels(trans.index,rotation=0) my_plot.get_figure().savefig("waterfall.png",dpi=200,bbox_inches='tight')
运行该脚本将生成下面这个漂亮的图表:
最后的想法
如果你之前不熟悉瀑布图,希望这个示例能够向你展示它到底是多么有用。我想,可能一些人会觉得对于一个图表来说需要这么多的脚本代码有点糟糕。在某些方面,我同意这种想法。如果你仅仅只是做一个瀑布图,而以后不会再碰它,那么你还是继续用Excel中的方法吧。
然而,如果瀑布图真的很有用,并且你需要将它复制给100个客户,将会怎么样呢?接下来你将要怎么做呢?此时使用Excel将会是一个挑战,而使用本文中的脚本来创建100个不同的表格将相当容易。再次说明,这一程序的真正价值在于,当你需要扩展这个解决方案时,它能够便于你创建一个易于复制的程序。
我真的很喜欢学习更多Pandas、matplotlib和IPothon的知识。我很高兴这种方法能够帮到你,并希望其他人也可以从中学习到一些知识,并将这一课所学应用到他们的日常工作中。
Python,瀑布图
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]