学习过marshal模块用于序列化和反序列化,但marshal的功能比较薄弱,只支持部分内置数据类型的序列化/反序列化,对于用户自定义的类型就无能为力,同时marshal不支持自引用(递归引用)的对象的序列化。所以直接使用marshal来序列化/反序列化可能不是很方便。还好,python标准库提供了功能更加强大且更加安全的pickle和cPickle模块。
cPickle模块是使用C语言实现的,所以在运行效率上比pickle要高。但是cPickle模块中定义的类型不能被继承(其实大多数时候,我们不需要从这些类型中继承。)。cPickle和pickle的序列化/反序列化规则是一样的,我们可以使用pickle序列化一个对象,然后使用cPickle来反序列化。同时,这两个模块在处理自引用类型时会变得更加“聪明”,它不会无限制的递归序列化自引用对象,对于同一对象的多次引用,它只会序列化一次。例如:
import marshal, pickle list = [1] list.append(list) byt1 = marshal.dumps(list) #出错, 无限制的递归序列化 byt2 = pickle.dumps(list) #No problem
Python规范(Python-specific)提供了pickle的序列化规则。这就不必担心不同版本的Python之间序列化兼容性问题。默认情况下,pickle的序列化是基于文本的,我们可以直接用文本编辑器查看序列化的文本。我们也可以序列成二进制格式的数据,这样的结果体积会更小。更详细的内容,可以参考Python手册pickle模块。
下面就开始使用pickle吧~
pickle.dump(obj, file[, protocol])
序列化对象,并将结果数据流写入到文件对象中。参数protocol是序列化模式,默认值为0,表示以文本的形式序列化。protocol的值还可以是1或2,表示以二进制的形式序列化。
pickle.load(file)
反序列化对象。将文件中的数据解析为一个Python对象。下面通过一个简单的例子来演示上面两个方法的使用:
#coding=gbk import pickle, StringIO class Person(object): '''自定义类型。 ''' def __init__(self, name, address): self.name = name self.address = address def display(self): print 'name:', self.name, 'address:', self.address jj = Person("JGood", "中国 杭州") jj.display() file = StringIO.StringIO() pickle.dump(jj, file, 0) #序列化 #print file.getvalue() #打印序列化后的结果 #del Person #反序列的时候,必须能找到对应类的定义。否则反序列化操作失败。 file.seek(0) jj1 = pickle.load(file) #反序列化 jj1.display() file.close()
注意:在反序列化的时候,必须能找到对应类的定义,否则反序列化将失败。在上面的例子中,如果取消#del Person的注释,在运行时将抛AttributeError异常,提示当前模块找不到Person的定义。
pickle.dumps(obj[, protocol])
pickle.loads(string)
我们也可以直接获取序列化后的数据流,或者直接从数据流反序列化。方法dumps与loads就完成这样的功能。dumps返回序列化后的数据流,loads返回的序列化生成的对象。
python模块中还定义了两个类,分别用来序列化、反序列化对象。
class pickle.Pickler(file[, protocal]):
该类用于序列化对象。参数file是一个类文件对象(file-like object),用于保存序列化结果。可选参数表示序列化模式。它定义了两个方法:
dump(obj):
将对象序列化,并保存到类文件对象中。参数obj是要序列化的对象。
clear_memo()
清空pickler的“备忘”。使用Pickler实例在序列化对象的时候,它会“记住”已经被序列化的对象引用,所以对同一对象多次调用dump(obj),pickler不会“傻傻”的去多次序列化。下面是一个简单的例子:
#coding=gbk import pickle, StringIO class Person(object): '''自定义类型。 ''' def __init__(self, name, address): self.name = name self.address = address def display(self): print 'name:', self.name, 'address:', self.address fle = StringIO.StringIO() pick = pickle.Pickler(fle) person = Person("JGood", "Hangzhou China") pick.dump(person) val1 = fle.getvalue() print len(val1) pick.clear_memo() #注释此句,再看看运行结果 pick.dump(person) #对同一引用对象再次进行序列化 val2 = fle.getvalue() print len(val2) #---- 结果 ---- #148 #296 # #将这行代码注释掉:pick.clear_memo() #结果为: #148 #152 class pickle.Unpickler(file):
该类用于反序列化对象。参数file是一个类文件(file-like object)对象,Unpickler从该参数中获取数据进行反序列化。
load():
反序列化对象。该方法会根据已经序列化的数据流,自动选择合适的反序列化模式。
#.... 接上个例子中的代码 fle.seek(0) unpick = pickle.Unpickler(fle) print unpick.load()
上面介绍了pickle模块的基本使用,但和marshal一样,并不是所有的类型都可以通过pickle序列化的。例如对于一个嵌套的类型,使用pickle序列化就失败。例如:
class A(object): class B(object): def __init__(self, name): self.name = name def __init__(self): print 'init A' b = A.B("my name") print b c = pickle.dumps(b, 0) #失败哦 print pickle.loads(c)
关于pickle支持的序列化类型,可以参考Python手册。
Python,序列化
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]