本文实例讲述了Python基于动态规划算法计算单词距离。分享给大家供大家参考。具体如下:

#!/usr/bin/env python
#coding=utf-8
def word_distance(m,n):
  """compute the least steps number to convert m to n by insert , delete , replace .
  动态规划算法,计算单词距离
  > print word_distance("abc","abec")
  1
  > print word_distance("ababec","abc")
  3
  """
  len_1=lambda x:len(x)+1
  c=[[i] for i in range(0,len_1(m)) ]
  c[0]=[j for j in range(0,len_1(n))]
  for i in range(0,len(m)):
  #  print i,' ',
    for j in range(0,len(n)):
      c[i+1].append(
        min(
          c[i][j+1]+1,#插入n[j]
          c[i+1][j]+1,#删除m[j]
          c[i][j] + (0 if m[i]==n[j] else 1 )#改
        )
      )
  #    print c[i+1][j+1],m[i],n[j],' ',
  #  print ''
  return c[-1][-1]
import doctest
doctest.testmod()
raw_input("Success!")

希望本文所述对大家的Python程序设计有所帮助。

标签:
Python,动态规划算法,计算,单词距离

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“Python基于动态规划算法计算单词距离”
暂无“Python基于动态规划算法计算单词距离”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。