任何使用yield的函数都称之为生成器,如:
def count(n): while n > 0: yield n #生成值:n n -= 1
另外一种说法:生成器就是一个返回迭代器的函数,与普通函数的区别是生成器包含yield语句,更简单点理解生成器就是一个迭代器。
使用yield,可以让函数生成一个序列,该函数返回的对象类型是"generator",通过该对象连续调用next()方法返回序列值。
c = count(5) c.__next__() #python 3.4.3要使用c.__next__()不能使用c.next() > 5 c.__next__() >4
生成器函数只有在调用__next()__方法的时候才开始执行函数里面的语句,比如:
def count(n): print ( "cunting" ) while n > 0: yield n #生成值:n n -= 1
在调用count函数时:c=count(5),并不会打印"counting"只有等到调用c.__next__()时才真正执行里面的语句。每次调用__next__()方法时,count函数会运行到语句yield n处为止,__next__()的返回值就是生成值n,再次调用__next__()方法时,函数继续执行yield之后的语句(熟悉Java的朋友肯定知道Thread.yield()方法,作用是暂停当前线程的运行,让其他线程执行),如:
def count(n): print ("cunting" ) while n > 0: print ('before yield') yield n #生成值:n n -= 1 print ('after yield' )
上述代码在第一次调用__next__方法时,并不会打印"after yield"。如果一直调用__next__方法,当执行到没有可迭代的值后,程序就会报错:
Traceback (most recent call last): File "", line 1, in StopIteration
所以一般不会手动的调用__next__方法,而使用for循环:
for i in count(5): print (i),
实例: 用yield生成器模拟Linux中命令:tail -f file | grep python 用于查找监控日志文件中出现有python字样的行。
import time def tail(f): f.seek(0,2)#移动到文件EOF while True: line = f.readline() #读取文件中新的文本行 if not line: time.sleep(0.1) continue yield line def grep(lines,searchtext): for line in lines: if searchtext in line: yield line flog = tail(open('warn.log')) pylines = grep(flog,'python') for line in pylines: print ( line, ) #当此程序运行时,若warn.log文件中末尾有新增一行,且该一行包含python,该行就会被打印出来 #若打开warn.log时,末尾已经有了一行包含python,该行不会被打印,因为上面是f.seek(0,2)移动到了文件EOF处 #故,上面程序实现了tail -f warn.log | grep 'python'的功能,动态实时检测warn.log中是否新增现了 #新的行,且该行包含python
用yield实现斐波那契数列:
def fibonacci(): a=b=1 yield a yield b while True: a,b = b,a+b yield b
调用:
for num in fibonacci(): if num > 100: break print (num),
yield中return的作用:
作为生成器,因为每次迭代就会返回一个值,所以不能显示的在生成器函数中return 某个值,包括None值也不行,否则会抛出“SyntaxError”的异常,但是在函数中可以出现单独的return,表示结束该语句。
通过固定长度的缓冲区不断读文件,防止一次性读取出现内存溢出的例子:
def read_file(path): size = 1024 with open(path,'r') as f: while True: block = f.read(SIZE) if block: yield block else: return
如果是在函数中return 具体某个值,就直接抛异常了
> def test_return(): ... yield 4 ... return 0 ... File "<stdin>", line 3 SyntaxError: 'return' with argument inside generator
例子
下面来看几段代码示例:
例1:
> def mygenerator(): ... print 'start...' ... yield 5 ... > mygenerator() //在此处调用,并没有打印出start...说明存在yield的函数没有被运行,即暂停 <generator object mygenerator at 0xb762502c> > mygenerator().next() //调用next()即可让函数运行. start... 5 >
如一个函数中出现多个yield则next()会停止在下一个yield前,见例2:
例2:
> def fun2(): ... print 'first' ... yield 5 ... print 'second' ... yield 23 ... print 'end...' ... > g1 = fun2() > g1.next() //第一次运行,暂停在yield 5 first 5 > g1.next() //第二次运行,暂停在yield 23 second 23 > g1.next() //第三次运行,由于之后没有yield,再次next()就会抛出错误 end... Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration >
为什么yield 5会输出5,yield 23会输出23"htmlcode">
> def fun(): ... print 'start...' ... m = yield 5 ... print m ... print 'middle...' ... d = yield 12 ... print d ... print 'end...' ... > m = fun() //创建一个对象 > m.next() //会使函数执行到下一个yield前 start... 5 > m.send('message') //利用send()传递值 message //send()传递进来的 middle... 12 > m.next() None //可见next()返回值为空 end... Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
Python3,yield
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]