这里以监控内存使用率为例,写的一个简单demo性程序,具体操作根据51reboot提供的教程写如下。

一、建库建表

创建falcon数据库:

mysql> create database falcon character set utf8;
Query OK, 1 row affected (0.00 sec)

创建内存监控使用的表stat,表结构如下:

CREATE TABLE `stat` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `host` varchar(256) DEFAULT NULL,
 `mem_free` int(11) DEFAULT NULL,
 `mem_usage` int(11) DEFAULT NULL,
 `mem_total` int(11) DEFAULT NULL,
 `load_avg` varchar(128) DEFAULT NULL,
 `time` bigint(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `host` (`host`(255))
) ENGINE=InnoDB AUTO_INCREMENT=0 DEFAULT CHARSET=utf8;

二、flask web端设置

首先我们设计一个web服务,实现如下功能:

完成监控页面展示
接受POST提交上来的数据
提供json数据GET接口
具体框架结构图如下:

用Python的Flask框架结合MySQL写一个内存监控程序

目录结构如下:

web
├── flask_web.py
└── templates
 └── mon.html

flask_web代码如下:

import MySQLdb as mysql
import json
from flask import Flask, request, render_template
app = Flask(__name__)
db = mysql.connect(user="361way", passwd="123456",   db="falcon", charset="utf8")
db.autocommit(True)
c = db.cursor()
@app.route("/", methods=["GET", "POST"])
def hello():
 sql = ""
 if request.method == "POST":
  data = request.json
  try:
   sql = "INSERT INTO `stat` (`host`,`mem_free`,`mem_usage`,`mem_total`,`load_avg`,`time`) VALUES('%s', '%d', '%d', '%d', '%s', '%d')" % (data['Host'], data['MemFree'], data['MemUsage'], data['MemTotal'], data['LoadAvg'], int(data['Time']))
   ret = c.execute(sql)
  except mysql.IntegrityError:
   pass
  return "OK"
 else:
  return render_template("mon.html")
@app.route("/data", methods=["GET"])
def getdata():
 c.execute("SELECT `time`,`mem_usage` FROM `stat`")
 ones = [[i[0]*1000, i[1]] for i in c.fetchall()]
 return "%s(%s);" % (request.args.get('callback'), json.dumps(ones))
if __name__ == "__main__":
 app.run(host="0.0.0.0", port=8888, debug=True)

这里使用的汇图JS为highcharts、highstock  ,具体模板页面内容如下:

[root@91it templates]# cat mon.html
<title>memory monitor</title>
<!DOCTYPE HTML>
<html>
 <head>
  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
  <title>Highstock Example</title>
  <!-- <script type="text/javascript" src="/UploadFiles/2021-04-08/{{ url_for('static', filename='jquery.min.js') }}">

注:这里的JS代码都直接使用互联网上的代码,如果主机无法连接互联网的,可以将上面的三段代取取下来,在templates 的同级目录创建static 目录,将下载下来的三个文件放到该目录,删除模板中三处引用javascript处的代码,使用当前注释的三段。

三、agent被监控端设置

web展示页面完成了,运行起来:python flask_web.py 监听在8888端口上。我们需要做一个agent来采集数据,并通过post方法请求flask_web页面,将数据上传写入数据库。这里以监控内存为例,具体监控代码如下:

#!/usr/bin/env python
#coding=utf-8
import inspect
import time
import urllib, urllib2
import json
import socket
class mon:
 def __init__(self):
  self.data = {}
 def getTime(self):
  return str(int(time.time()) + 8 * 3600)
 def getHost(self):
  return socket.gethostname()
 def getLoadAvg(self):
  with open('/proc/loadavg') as load_open:
   a = load_open.read().split()[:3]
   return ','.join(a)
 def getMemTotal(self):
  with open('/proc/meminfo') as mem_open:
   a = int(mem_open.readline().split()[1])
   return a / 1024
 def getMemUsage(self, noBufferCache=True):
  if noBufferCache:
   with open('/proc/meminfo') as mem_open:
    T = int(mem_open.readline().split()[1])
    F = int(mem_open.readline().split()[1])
    B = int(mem_open.readline().split()[1])
    C = int(mem_open.readline().split()[1])
    return (T-F-B-C)/1024
  else:
   with open('/proc/meminfo') as mem_open:
    a = int(mem_open.readline().split()[1]) - int(mem_open.readline().split()[1])
    return a / 1024
 def getMemFree(self, noBufferCache=True):
  if noBufferCache:
   with open('/proc/meminfo') as mem_open:
    T = int(mem_open.readline().split()[1])
    F = int(mem_open.readline().split()[1])
    B = int(mem_open.readline().split()[1])
    C = int(mem_open.readline().split()[1])
    return (F+B+C)/1024
  else:
   with open('/proc/meminfo') as mem_open:
    mem_open.readline()
    a = int(mem_open.readline().split()[1])
    return a / 1024
 def runAllGet(self):
  #自动获取mon类里的所有getXXX方法,用XXX作为key,getXXX()的返回值作为value,构造字典
  for fun in inspect.getmembers(self, predicate=inspect.ismethod):
   if fun[0][:3] == 'get':
    self.data[fun[0][3:]] = fun[1]()
  return self.data
if __name__ == "__main__":
 while True:
  m = mon()
  data = m.runAllGet()
  print data
  req = urllib2.Request("http://test.361way.com:8888", json.dumps(data), {'Content-Type': 'application/json'})
  f = urllib2.urlopen(req)
  response = f.read()
  print response
  f.close()
  time.sleep(60)

nohup python moniItems.py >/dev/null 2>&1 & 在被监控主机上运行,如果出于实验目的,想尽快的看到展示效果,可以将time.sleep(60) 改为time.sleep(2) ,这样每2秒就会取一次数据写入数据库。

访问 http://test.361way.com:8888 就可以看到我们的监控数据了:效果图如下

用Python的Flask框架结合MySQL写一个内存监控程序

highcharts支持将按时间拖动,也支持按指定时间段查看。并且查看到的图片可以直接保存为png、jpg或pdf、csv等格式查看。

标签:
Flask,MySQL

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。