最小编辑距离或莱文斯坦距离(Levenshtein),指由字符串A转化为字符串B的最小编辑次数。允许的编辑操作有:删除,插入,替换。具体内容可参见:维基百科—莱文斯坦距离。一般代码实现的方式都是通过动态规划算法,找出从A转化为B的每一步的最小步骤。从Google图片借来的图,

Python实现计算最小编辑距离

Python代码实现, (其中要注意矩阵的下标从1开始,而字符串的下标从0开始):

 def normal_leven(str1, str2):
   len_str1 = len(str1) + 1
   len_str2 = len(str2) + 1
   #create matrix
   matrix = [0 for n in range(len_str1 * len_str2)]
   #init x axis
   for i in range(len_str1):
     matrix[i] = i
   #init y axis
   for j in range(0, len(matrix), len_str1):
     if j % len_str1 == 0:
       matrix[j] = j // len_str1

   for i in range(1, len_str1):
     for j in range(1, len_str2):
       if str1[i-1] == str2[j-1]:
         cost = 0
       else:
         cost = 1
       matrix[j*len_str1+i] = min(matrix[(j-1)*len_str1+i]+1,
                     matrix[j*len_str1+(i-1)]+1,
                     matrix[(j-1)*len_str1+(i-1)] + cost)

   return matrix[-1]

最近看文章看到Python库提供了一个包difflib实现了从对象A转化对象B的步骤,那么计算最小编辑距离的代码也可以这样写了:

 def difflib_leven(str1, str2):
  leven_cost = 0
  s = difflib.SequenceMatcher(None, str1, str2)
  for tag, i1, i2, j1, j2 in s.get_opcodes():
    #print('{:7} a[{}: {}] --> b[{}: {}] {} --> {}'.format(tag, i1, i2, j1, j2, str1[i1: i2], str2[j1: j2]))

    if tag == 'replace':
      leven_cost += max(i2-i1, j2-j1)
    elif tag == 'insert':
      leven_cost += (j2-j1)
    elif tag == 'delete':
      leven_cost += (i2-i1)
  return leven_cost

代码地址

标签:
Python,最小编辑距离

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“Python实现计算最小编辑距离”
暂无“Python实现计算最小编辑距离”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。