pre_file.py
#-*-coding:utf-8-*- import MySQLdb import MySQLdb as mdb import os,sys,string import jieba import codecs reload(sys) sys.setdefaultencoding('utf-8') #连接数据库 try: conn=mdb.connect(host='127.0.0.1',user='root',passwd='kongjunli',db='test1',charset='utf8') except Exception,e: print e sys.exit() #获取cursor对象操作数据库 cursor=conn.cursor(mdb.cursors.DictCursor) #cursor游标 #获取内容 sql='SELECT link,content FROM test1.spider;' cursor.execute(sql) #execute()方法,将字符串当命令执行 data=cursor.fetchall()#fetchall()接收全部返回结果行 f=codecs.open('C:\Users\kk\Desktop\hello-result1.txt','w','utf-8') for row in data: #row接收结果行的每行数据 seg='/'.join(list(jieba.cut(row['content'],cut_all='False'))) f.write(row['link']+' '+seg+'\r\n') f.close() cursor.close() #提交事务,在插入数据时必须
jiansuo.py
#-*-coding:utf-8-*- import sys import string import MySQLdb import MySQLdb as mdb import gensim from gensim import corpora,models,similarities from gensim.similarities import MatrixSimilarity import logging import codecs reload(sys) sys.setdefaultencoding('utf-8') con=mdb.connect(host='127.0.0.1',user='root',passwd='kongjunli',db='test1',charset='utf8') with con: cur=con.cursor() cur.execute('SELECT * FROM cutresult_copy') rows=cur.fetchall() class MyCorpus(object): def __iter__(self): for row in rows: yield str(row[1]).split('/') #开启日志 logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s',level=logging.INFO) Corp=MyCorpus() #将网页文档转化为tf-idf dictionary=corpora.Dictionary(Corp) corpus=[dictionary.doc2bow(text) for text in Corp] #将文档转化为词袋模型 #print corpus tfidf=models.TfidfModel(corpus)#使用tf-idf模型得出文档的tf-idf模型 corpus_tfidf=tfidf[corpus]#计算得出tf-idf值 #for doc in corpus_tfidf: #print doc ### ''' q_file=open('C:\Users\kk\Desktop\q.txt','r') query=q_file.readline() q_file.close() vec_bow=dictionary.doc2bow(query.split(' '))#将请求转化为词带模型 vec_tfidf=tfidf[vec_bow]#计算出请求的tf-idf值 #for t in vec_tfidf: # print t ''' ### query=raw_input('Enter your query:') vec_bow=dictionary.doc2bow(query.split()) vec_tfidf=tfidf[vec_bow] index=similarities.MatrixSimilarity(corpus_tfidf) sims=index[vec_tfidf] similarity=list(sims) print sorted(similarity,reverse=True)
encodings.xml
<"1.0" encoding="UTF-8"?> <project version="4"> <component name="Encoding"> <file url="PROJECT" charset="UTF-8" /> </component> </project>
misc.xml
<"1.0" encoding="UTF-8"?> <project version="4"> <component name="ProjectLevelVcsManager" settingsEditedManually="false"> <OptionsSetting value="true" id="Add" /> <OptionsSetting value="true" id="Remove" /> <OptionsSetting value="true" id="Checkout" /> <OptionsSetting value="true" id="Update" /> <OptionsSetting value="true" id="Status" /> <OptionsSetting value="true" id="Edit" /> <ConfirmationsSetting value="0" id="Add" /> <ConfirmationsSetting value="0" id="Remove" /> </component> <component name="ProjectRootManager" version="2" project-jdk-name="Python 2.7.11 (C:\Python27\python.exe)" project-jdk-type="Python SDK" /> </project>
modules.xml
<"1.0" encoding="UTF-8"?> <project version="4"> <component name="ProjectModuleManager"> <modules> <module fileurl="file://$PROJECT_DIR$/.idea/爬虫练习代码.iml" filepath="$PROJECT_DIR$/.idea/爬虫练习代码.iml" /> </modules> </component> </project>
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“Python使用gensim计算文档相似性”评论...
更新动态
2024年11月25日
2024年11月25日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]