任务异步化
打开浏览器,输入地址,按下回车,打开了页面。于是一个HTTP请求(request)就由客户端发送到服务器,服务器处理请求,返回响应(response)内容。
我们每天都在浏览网页,发送大大小小的请求给服务器。有时候,服务器接到了请求,会发现他也需要给另外的服务器发送请求,或者服务器也需要做另外一些事情,于是最初们发送的请求就被阻塞了,也就是要等待服务器完成其他的事情。
更多的时候,服务器做的额外事情,并不需要客户端等待,这时候就可以把这些额外的事情异步去做。从事异步任务的工具有很多。主要原理还是处理通知消息,针对通知消息通常采取是队列结构。生产和消费消息进行通信和业务实现。
生产消费与队列
上述异步任务的实现,可以抽象为生产者消费模型。如同一个餐馆,厨师在做饭,吃货在吃饭。如果厨师做了很多,暂时卖不完,厨师就会休息;如果客户很多,厨师马不停蹄的忙碌,客户则需要慢慢等待。实现生产者和消费者的方式用很多,下面使用Python标准库Queue写个小例子:
import random import time from Queue import Queue from threading import Thread queue = Queue(10) class Producer(Thread): def run(self): while True: elem = random.randrange(9) queue.put(elem) print "厨师 {} 做了 {} 饭 --- 还剩 {} 饭没卖完".format(self.name, elem, queue.qsize()) time.sleep(random.random()) class Consumer(Thread): def run(self): while True: elem = queue.get() print "吃货{} 吃了 {} 饭 --- 还有 {} 饭可以吃".format(self.name, elem, queue.qsize()) time.sleep(random.random()) def main(): for i in range(3): p = Producer() p.start() for i in range(2): c = Consumer() c.start() if __name__ == '__main__': main()
大概输出如下:
厨师 Thread-1 做了 1 饭 --- 还剩 1 饭没卖完 厨师 Thread-2 做了 8 饭 --- 还剩 2 饭没卖完 厨师 Thread-3 做了 3 饭 --- 还剩 3 饭没卖完 吃货Thread-4 吃了 1 饭 --- 还有 2 饭可以吃 吃货Thread-5 吃了 8 饭 --- 还有 1 饭可以吃 吃货Thread-4 吃了 3 饭 --- 还有 0 饭可以吃 厨师 Thread-1 做了 0 饭 --- 还剩 1 饭没卖完 厨师 Thread-2 做了 0 饭 --- 还剩 2 饭没卖完 厨师 Thread-1 做了 1 饭 --- 还剩 3 饭没卖完 厨师 Thread-1 做了 1 饭 --- 还剩 4 饭没卖完 吃货Thread-4 吃了 0 饭 --- 还有 3 饭可以吃 厨师 Thread-3 做了 3 饭 --- 还剩 4 饭没卖完 吃货Thread-5 吃了 0 饭 --- 还有 3 饭可以吃 吃货Thread-5 吃了 1 饭 --- 还有 2 饭可以吃 厨师 Thread-2 做了 8 饭 --- 还剩 3 饭没卖完 厨师 Thread-2 做了 8 饭 --- 还剩 4 饭没卖完
Redis 队列
Python内置了一个好用的队列结构。我们也可以是用redis实现类似的操作。并做一个简单的异步任务。
Redis提供了两种方式来作消息队列。一个是使用生产者消费模式模式,另外一个方法就是发布订阅者模式。前者会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听。后者也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是ping的。
生产消费模式
主要使用了redis提供的blpop获取队列数据,如果队列没有数据则阻塞等待,也就是监听。
import redis class Task(object): def __init__(self): self.rcon = redis.StrictRedis(host='localhost', db=5) self.queue = 'task:prodcons:queue' def listen_task(self): while True: task = self.rcon.blpop(self.queue, 0)[1] print "Task get", task if __name__ == '__main__': print 'listen task queue' Task().listen_task()
发布订阅模式
使用redis的pubsub功能,订阅者订阅频道,发布者发布消息到频道了,频道就是一个消息队列。
import redis class Task(object): def __init__(self): self.rcon = redis.StrictRedis(host='localhost', db=5) self.ps = self.rcon.pubsub() self.ps.subscribe('task:pubsub:channel') def listen_task(self): for i in self.ps.listen(): if i['type'] == 'message': print "Task get", i['data'] if __name__ == '__main__': print 'listen task channel' Task().listen_task()
Flask 入口
我们分别实现了两种异步任务的后端服务,直接启动他们,就能监听redis队列或频道的消息了。简单的测试如下:
import redis import random import logging from flask import Flask, redirect app = Flask(__name__) rcon = redis.StrictRedis(host='localhost', db=5) prodcons_queue = 'task:prodcons:queue' pubsub_channel = 'task:pubsub:channel' @app.route('/') def index(): html = """ <br> <center><h3>Redis Message Queue</h3> <br> <a href="/prodcons">生产消费者模式</a> <br> <br> <a href="/pubsub">发布订阅者模式</a> </center> """ return html @app.route('/prodcons') def prodcons(): elem = random.randrange(10) rcon.lpush(prodcons_queue, elem) logging.info("lpush {} -- {}".format(prodcons_queue, elem)) return redirect('/') @app.route('/pubsub') def pubsub(): ps = rcon.pubsub() ps.subscribe(pubsub_channel) elem = random.randrange(10) rcon.publish(pubsub_channel, elem) return redirect('/') if __name__ == '__main__': app.run(debug=True)
启动脚本,使用
siege -c10 -r 5 http://127.0.0.1:5000/prodcons siege -c10 -r 5 http://127.0.0.1:5000/pubsub
可以分别在监听的脚本输入中看到异步消息。在异步的任务中,可以执行一些耗时间的操作,当然目前这些做法并不知道异步的执行结果,如果需要知道异步的执行结果,可以考虑设计协程任务或者使用一些工具如RQ或者celery等。
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]