多条件排序及itemgetter的应用
曾经客户端的同事用as写一大堆代码来排序,在得知Python排序往往只需要一行,惊讶无比,遂对python产生浓厚的兴趣。
之前在做足球的积分榜的时候需要用到多条件排序,如果积分相同,则按净胜球,再相同按进球数,再相同按失球数。
即按积分P、净胜球GD、进球GS、失球GA这样的顺序。
在python中,排序非常方便,排序的参数主要有key、reverse。参数cmp不建议使用了,在python3.0被移除了,用参数key代替。
对于多条件排序,也非常简单,只需要记住下面这句话就行。 即参数key指定的函数返回一个元组,多条件排序的顺序将按照元组的顺序。
看了下面的代码你就明白了,下面是2010世界杯小组赛A组的积分榜。
teamitems = [{'team':'France' , 'P':1 , 'GD':-3 , 'GS':1 , 'GA':4}, {'team':'Uruguay' , 'P':7 , 'GD':4 , 'GS':4 , 'GA':0}, {'team':'SouthAfrica' , 'P':4 , 'GD':-2 , 'GS':3 , 'GA':5}, {'team':'Mexico' , 'P':4 , 'GD':1 , 'GS':3 , 'GA':2}] print sorted(teamitems ,key = lambda x:(x['P'],x['GD'],x['GS'],x['GA']),reverse=True)
输出
[{'P': 7, 'GD': 4, 'GS': 4, 'GA': 0, 'team': 'Uruguay'}, {'P': 4, 'GD': 1, 'GS': 3, 'GA': 2, 'team': 'Mexico'}, {'P': 4, 'GD': -2, 'GS': 3, 'GA': 5, 'team': 'SouthAfrica'}, {'P': 1, 'GD': -3, 'GS': 1, 'GA': 4, 'team': 'France'}]
即小组排名是乌拉圭、墨西哥、南非、法国。
不过这样一个个取字典的键值有点啰嗦,用itemgetter更简洁优雅,上面那句代码可以用如下替换。
from operator import itemgetter print sorted(teamitems ,key = itemgetter('P','GD','GS','GA'),reverse=True)
有的升序有的降序的情况下怎么多条件排序
之前在统计导出各区服玩家消费的时候需要进行升序降序混搭的多条件排序。
需求是这样的。区服从小到大排,如果区服相同,则按消费从大到小排。
实现方法是利用python的sort算法是稳定排序,对数据进行多次排序,先排次要条件,后排主要条件。
还有一种更简洁的一行流的方法,不过只有当待排数据是数值的时候才有效。此方法利用相反数的性质,在前面加个负号。
下面上代码。
#假设数据如下。 data = ''''' 区服,玩家id,累积消费 3,a,2380 1,b,11900 4,e,3250 1,k,100 4,j,599 2,m,872 3,f,5560 1,y,2500 ''' items = [x.split(',') for x in filter(None,data.split('\n'))[1:]] #去掉空行和忽略首行并把字符串转成二维数组 #方法一 items.sort(key=lambda x:int(x[2]),reverse=True)#先排消费 items.sort(key=lambda x:int(x[0]))#然后排区服 print '\n'.join([','.join(x) for x in items]) print '-----------' #方法二 items = sorted(items,key=lambda x:(int(x[0]),-int(x[2]))) print '\n'.join([','.join(x) for x in items])
Python,多条件排序,排序
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]