装饰函数和方法

我们先定义两个简单的数学函数,一个用来计算平方和,一个用来计算平方差:

# get square sum
def square_sum(a, b):
  return a**2 + b**2

# get square diff
def square_diff(a, b):
  return a**2 - b**2

print(square_sum(3, 4))
print(square_diff(3, 4))

在拥有了基本的数学功能之后,我们可能想为函数增加其它的功能,比如打印输入。我们可以改写函数来实现这一点:

# modify: print input

# get square sum
def square_sum(a, b):
  print("intput:", a, b)
  return a**2 + b**2

# get square diff
def square_diff(a, b):
  print("input", a, b)
  return a**2 - b**2

print(square_sum(3, 4))
print(square_diff(3, 4))

我们修改了函数的定义,为函数增加了功能。

现在,我们使用装饰器来实现上述修改:

def decorator(F):
  def new_F(a, b):
    print("input", a, b)
    return F(a, b)
  return new_F

# get square sum
@decorator
def square_sum(a, b):
  return a**2 + b**2

# get square diff
@decorator
def square_diff(a, b):
  return a**2 - b**2

print(square_sum(3, 4))
print(square_diff(3, 4))

装饰器可以用def的形式定义,如上面代码中的decorator。装饰器接收一个可调用对象作为输入参数,并返回一个新的可调用对象。装饰器新建了一个可调用对象,也就是上面的new_F。new_F中,我们增加了打印的功能,并通过调用F(a, b)来实现原有函数的功能。

定义好装饰器后,我们就可以通过@语法使用了。在函数square_sum和square_diff定义之前调用@decorator,我们实际上将square_sum或square_diff传递给decorator,并将decorator返回的新的可调用对象赋给原来的函数名(square_sum或square_diff)。 所以,当我们调用square_sum(3, 4)的时候,就相当于:

square_sum = decorator(square_sum)
square_sum(3, 4)

我们知道,Python中的变量名和对象是分离的。变量名可以指向任意一个对象。从本质上,装饰器起到的就是这样一个重新指向变量名的作用(name binding),让同一个变量名指向一个新返回的可调用对象,从而达到修改可调用对象的目的。

与加工函数类似,我们可以使用装饰器加工类的方法。

如果我们有其他的类似函数,我们可以继续调用decorator来修饰函数,而不用重复修改函数或者增加新的封装。这样,我们就提高了程序的可重复利用性,并增加了程序的可读性。

含参的装饰器

在上面的装饰器调用中,比如@decorator,该装饰器默认它后面的函数是唯一的参数。装饰器的语法允许我们调用decorator时,提供其它参数,比如@decorator(a)。这样,就为装饰器的编写和使用提供了更大的灵活性。

# a new wrapper layer
def pre_str(pre=''):
  # old decorator
  def decorator(F):
    def new_F(a, b):
      print(pre + "input", a, b)
      return F(a, b)
    return new_F
  return decorator

# get square sum
@pre_str('^_^')
def square_sum(a, b):
  return a**2 + b**2

# get square diff
@pre_str('T_T')
def square_diff(a, b):
  return a**2 - b**2

print(square_sum(3, 4))
print(square_diff(3, 4))

上面的pre_str是允许参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器。我们可以将它理解为一个含有环境参量的闭包。当我们使用@pre_str('^_^')调用的时候,Python能够发现这一层的封装,并把参数传递到装饰器的环境中。该调用相当于:

square_sum = pre_str('^_^') (square_sum)

装饰类

在上面的例子中,装饰器接收一个函数,并返回一个函数,从而起到加工函数的效果。在Python 2.6以后,装饰器被拓展到类。一个装饰器可以接收一个类,并返回一个类,从而起到加工类的效果。

def decorator(aClass):
  class newClass:
    def __init__(self, age):
      self.total_display  = 0
      self.wrapped     = aClass(age)
    def display(self):
      self.total_display += 1
      print("total display", self.total_display)
      self.wrapped.display()
  return newClass

@decorator
class Bird:
  def __init__(self, age):
    self.age = age
  def display(self):
    print("My age is",self.age)

eagleLord = Bird(5)
for i in range(3):
  eagleLord.display()

在decorator中,我们返回了一个新类newClass。在新类中,我们记录了原来类生成的对象(self.wrapped),并附加了新的属性total_display,用于记录调用display的次数。我们也同时更改了display方法。

通过修改,我们的Bird类可以显示调用display的次数了。

标签:
Python,装饰器

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“Python编程中装饰器的使用示例解析”
暂无“Python编程中装饰器的使用示例解析”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。