Softmax回归函数是用于将分类结果归一化。但它不同于一般的按照比例归一化的方法,它通过对数变换来进行归一化,这样实现了较大的值在归一化过程中收益更多的情况。
Softmax公式
Softmax实现方法1
import numpy as np def softmax(x): """Compute softmax values for each sets of scores in x.""" pass # TODO: Compute and return softmax(x) x = np.array(x) x = np.exp(x) x.astype('float32') if x.ndim == 1: sumcol = sum(x) for i in range(x.size): x[i] = x[i]/float(sumcol) if x.ndim > 1: sumcol = x.sum(axis = 0) for row in x: for i in range(row.size): row[i] = row[i]/float(sumcol[i]) return x #测试结果 scores = [3.0,1.0, 0.2] print softmax(scores)
其计算结果如下:
[ 0.8360188 0.11314284 0.05083836]
Softmax实现方法2
import numpy as np def softmax(x): return np.exp(x)/np.sum(np.exp(x),axis=0) #测试结果 scores = [3.0,1.0, 0.2] print softmax(scores)
以上这篇Python下的Softmax回归函数的实现方法(推荐)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
softmax回归,python
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“Python下的Softmax回归函数的实现方法(推荐)”评论...
更新动态
2024年11月25日
2024年11月25日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]