Python 迭代器与生成器实例详解

一、如何实现可迭代对象和迭代器对象

1.由可迭代对象得到迭代器对象

例如l就是可迭代对象,iter(l)是迭代器对象

In [1]: l = [1,2,3,4]

In [2]: l.__iter__
Out[2]: <method-wrapper '__iter__' of list object at 0x000000000426C7C8>

In [3]: t = iter(l)

In [4]: t.next()
Out[4]: 1

In [5]: t.next()
Out[5]: 2

In [6]: t.next()
Out[6]: 3

In [7]: t.next()
Out[7]: 4

In [8]: t.next()
---------------------------------------------------------------------------
StopIteration               Traceback (most recent call last)
<ipython-input-8-3660e2a3d509> in <module>()
----> 1 t.next()

StopIteration:

for x in l:
  print x
for 循环的工作流程,就是先有iter(l)得到一个t,然后不停的调用t.nex(),到最后捕获到StopIteration,就结束迭代

# 下面这种直接调用函数的方法如果数据量大的时候会对网络IO要求比较高,可以采用迭代器的方法

def getWeather(city):
  r = requests.get(u'http://wthrcdn.etouch.cn/weather_mini"htmlcode">
# -*- coding:utf-8 -*-
import requests
from collections import Iterable, Iterator

class WeatherIterator(Iterator):
  def __init__(self, cities):
    self.cities = cities
    self.index = 0

  def getWeather(self,city):
    r = requests.get(u'http://wthrcdn.etouch.cn/weather_mini"htmlcode">
class PrimeNumbers:
  def __init__(self, start, end):
    self.start = start
    self.end = end

  def isPrimeNum(self, k):
    if k < 2:
      return False
    for i in xrange(2, k):
      if k % i == 0:
        return False

    return True

  def __iter__(self):
    for k in xrange(self.start, self.end + 1):
      if self.isPrimeNum(k):
        yield k

for x in PrimeNumbers(1, 10):
  print x

输出:
2
3
5
7

三、实现反向迭代

1.反向进行迭代

例如: 实现一个浮点数发生器FloatRange(和xrange类似),根据给定范围(start, end)和步径值(step)产生一系列连续浮点数,如迭代FloatRange(3.0,4.0,0.2)可产生序列:

正向: 3.0 -> 3.2 -> 3.4 -> 3.6 -> 3.8 -> 4.0

反向: 4.0 -> 3.8 -> 3.6 -> 3.4 -> 3.2 -> 3.0

class FloatRange:
  def __init__(self, start, end, step=0.1):
    self.start = start
    self.end = end
    self.step = step

  def __iter__(self):
    t = self.start
    while round(t,14) <= round(self.end, 14):
      yield t
      t = t + self.step

  def __reversed__(self):
    t = self.end
    while round(t, 14) >= round(self.start, 14):
      yield t
      t = t - self.step

for x in reversed(FloatRange(3.0, 4.0, 0.2)):
  print x
输出:
4.0
3.8
3.6
3.4
3.2
3.0
for x in FloatRange(3.0, 4.0, 0.2):
    print x
输出:
3.0
3.2
3.4
3.6
3.8
4.0

上面代码采用round函数是因为浮点数比较会有精度问题,所以需要进行四舍五入

2.对迭代器进行切片操作

例如: 有某个文本文件,想读取其中某范围的内容,如100-300行之间的内容,python中文本文件是可迭代对象,是否可以使用类似列表切片的方式得到一个100-300行文件内容的生成器

使用标准库中的itertools.islice,它能返回一个迭代对象切片的生成器

f = open('/var/log/dmesg')

from itertools import islice

# 对文件内容100到300行之间进行切片,返回的是个生成器对象,默认歩径是1
islice(f, 100, 300)

# 前500行内容
islice(f, 500)

# 100行到末尾结束内容
islice(f, 100, None)


ps: 每次使用islice要重新申请对象,它会消耗原来的迭代对象

四、 迭代多个对象

1.在一个for语句中迭代多个可迭代对象

1、某班学生考试成绩语文、数学、英语分别存储在3个列表中,同时迭代三个列表,计算三个学生的总分(并行)

2、某年级四个班,某次考试每班英语成绩分别存储在4个列表中,依次迭代每个列表,统计全学年英语成绩高于90分人数(串行)

解决方案:

并行: 使用内置函数zip,它能将多个可迭代对象合并,每次迭代返回一个元组

from random import randint

chinese = [randint(60,100) for _ in xrange(40)]
math = [randint(60,100) for _ in xrange(40)]
english = [randint(60,100) for _ in xrange(40)]

total = []
for c,m,e in zip(chinese, math,english):
  total.append(c+m+e)

print total

输出:

[204, 227, 238, 201, 227, 205, 251, 274, 210, 242, 220, 239, 237, 207, 230, 267, 263, 240, 247, 249, 255, 268, 209, 270, 259, 251, 245, 262, 234, 221, 236, 250, 251, 249, 242, 255, 232, 272, 237, 253]

串行: 使用标准库中的itertools.chain,它能将多个可迭代对象连接

from random import randint
from itertools import chain

class1 = [randint(60,100) for _ in xrange(40)]
class2 = [randint(60,100) for _ in xrange(42)]
class3 = [randint(60,100) for _ in xrange(39)]
class4 = [randint(60,100) for _ in xrange(43)]

count = 0
for s in chain(class1, class2, class3, class4):
  if s > 90:
    count = count + 1

print count

输出:
38


感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

标签:
Python,迭代器与生成器,Python,迭代器与生成器使用方法

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“Python 迭代器与生成器实例详解”
暂无“Python 迭代器与生成器实例详解”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。