前言:前一篇文章大概说了EM算法的整个理解以及一些相关的公式神马的,那些数学公式啥的看完真的是忘完了,那就来用代码记忆记忆吧!接下来将会对python版本的EM算法进行一些分析。
EM的python实现和解析
引入问题(双硬币问题)
假设有两枚硬币A、B,以相同的概率随机选择一个硬币,进行如下的抛硬币实验:共做5次实验,每次实验独立的抛十次,结果如图中a所示,例如某次实验产生了H、T、T、T、H、H、T、H、T、H,H代表正面朝上。
假设试验数据记录员可能是实习生,业务不一定熟悉,造成a和b两种情况
a表示实习生记录了详细的试验数据,我们可以观测到试验数据中每次选择的是A还是B
b表示实习生忘了记录每次试验选择的是A还是B,我们无法观测实验数据中选择的硬币是哪个
问在两种情况下分别如何估计两个硬币正面出现的概率?
以上的针对于b实习生的问题其实和三硬币问题类似,只是这里把三硬币中第一个抛硬币的选择换成了实习生的选择。
对于已知是A硬币还是B硬币抛出的结果的时候,可以直接采用概率的求法来进行求解。对于含有隐变量的情况,也就是不知道到底是A硬币抛出的结果还是B硬币抛出的结果的时候,就需要采用EM算法进行求解了。如下图:
其中的EM算法的第一步就是初始化的过程,然后根据这个参数得出应该产生的结果。
构建观测数据集
针对这个问题,首先采集数据,用1表示H(正面),0表示T(反面):
#硬币投掷结果 observations = numpy.array([[1,0,0,0,1,1,0,1,0,1], [1,1,1,1,0,1,1,1,0,1], [1,0,1,1,1,1,1,0,1,1], [1,0,1,0,0,0,1,1,0,0], [0,1,1,1,0,1,1,1,0,1]])
第一步:参数的初始化
参数赋初值
第一个迭代的E步
抛硬币是一个二项分布,可以用scipy中的binom来计算。对于第一行数据,正反面各有5次,所以:
#二项分布求解公式 contribution_A = scipy.stats.binom.pmf(num_heads,len_observation,theta_A) contribution_B = scipy.stats.binom.pmf(num_heads,len_observation,theta_B)
将两个概率正规化,得到数据来自硬币A,B的概率:
weight_A = contribution_A / (contribution_A + contribution_B) weight_B = contribution_B / (contribution_A + contribution_B)
这个值类似于三硬币模型中的μ,只不过多了一个下标,代表是第几行数据(数据集由5行构成)。同理,可以算出剩下的4行数据的μ。
有了μ,就可以估计数据中AB分别产生正反面的次数了。μ代表数据来自硬币A的概率的估计,将它乘上正面的总数,得到正面来自硬币A的总数,同理有反面,同理有B的正反面。
#更新在当前参数下A,B硬币产生的正反面次数 counts['A']['H'] += weight_A * num_heads counts['A']['T'] += weight_A * num_tails counts['B']['H'] += weight_B * num_heads counts['B']['T'] += weight_B * num_tails
第一个迭代的M步
当前模型参数下,AB分别产生正反面的次数估计出来了,就可以计算新的模型参数了:
new_theta_A = counts['A']['H']/(counts['A']['H'] + counts['A']['T']) new_theta_B = counts['B']['H']/(counts['B']['H'] + counts['B']['T'])
于是就可以整理一下,给出EM算法单个迭代的代码:
def em_single(priors,observations): """ EM算法的单次迭代 Arguments ------------ priors:[theta_A,theta_B] observation:[m X n matrix] Returns --------------- new_priors:[new_theta_A,new_theta_B] :param priors: :param observations: :return: """ counts = {'A': {'H': 0, 'T': 0}, 'B': {'H': 0, 'T': 0}} theta_A = priors[0] theta_B = priors[1] #E step for observation in observations: len_observation = len(observation) num_heads = observation.sum() num_tails = len_observation-num_heads #二项分布求解公式 contribution_A = scipy.stats.binom.pmf(num_heads,len_observation,theta_A) contribution_B = scipy.stats.binom.pmf(num_heads,len_observation,theta_B) weight_A = contribution_A / (contribution_A + contribution_B) weight_B = contribution_B / (contribution_A + contribution_B) #更新在当前参数下A,B硬币产生的正反面次数 counts['A']['H'] += weight_A * num_heads counts['A']['T'] += weight_A * num_tails counts['B']['H'] += weight_B * num_heads counts['B']['T'] += weight_B * num_tails # M step new_theta_A = counts['A']['H'] / (counts['A']['H'] + counts['A']['T']) new_theta_B = counts['B']['H'] / (counts['B']['H'] + counts['B']['T']) return [new_theta_A,new_theta_B]
EM算法主循环
给定循环的两个终止条件:模型参数变化小于阈值;循环达到最大次数,就可以写出EM算法的主循环了
def em(observations,prior,tol = 1e-6,iterations=10000): """ EM算法 :param observations :观测数据 :param prior:模型初值 :param tol:迭代结束阈值 :param iterations:最大迭代次数 :return:局部最优的模型参数 """ iteration = 0; while iteration < iterations: new_prior = em_single(prior,observations) delta_change = numpy.abs(prior[0]-new_prior[0]) if delta_change < tol: break else: prior = new_prior iteration +=1 return [new_prior,iteration]
调用
给定数据集和初值,就可以调用EM算法了:
print em(observations,[0.6,0.5])
得到
[[0.72225028549925996, 0.55543808993848298], 36]
我们可以改变初值,试验初值对EM算法的影响。
print em(observations,[0.5,0.6])
结果:
[[0.55543727869042425, 0.72225099139214621], 37]
看来EM算法还是很健壮的。如果把初值设为相等会怎样?
print em(observations,[0.3,0.3])
输出:[[0.64000000000000001, 0.64000000000000001], 1]
显然,两个值相加不为1的时候就会破坏这个EM函数。
换一下初值:
print em(observations,[0.99999,0.00001])
输出:[[0.72225606292866507, 0.55543145006184214], 33]
EM算法对于参数的改变还是有一定的健壮性的。
以上是根据前人写的博客进行学习的~可以自己动手实现以下,对于python练习还是有作用的。希望对大家的学习有所帮助,也希望大家多多支持。
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]