本文实例为大家分享了tensorflow实现弹性网络回归算法,供大家参考,具体内容如下
python代码:
#用tensorflow实现弹性网络算法(多变量) #使用鸢尾花数据集,后三个特征作为特征,用来预测第一个特征。 #1 导入必要的编程库,创建计算图,加载数据集 import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn import datasets from tensorflow.python.framework import ops ops.get_default_graph() sess = tf.Session() iris = datasets.load_iris() x_vals = np.array([[x[1], x[2], x[3]] for x in iris.data]) y_vals = np.array([y[0] for y in iris.data]) #2 声明学习率,批量大小,占位符和模型变量,模型输出 learning_rate = 0.001 batch_size = 50 x_data = tf.placeholder(shape=[None, 3], dtype=tf.float32) #占位符大小为3 y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) A = tf.Variable(tf.random_normal(shape=[3,1])) b = tf.Variable(tf.random_normal(shape=[1,1])) model_output = tf.add(tf.matmul(x_data, A), b) #3 对于弹性网络回归算法,损失函数包括L1正则和L2正则 elastic_param1 = tf.constant(1.) elastic_param2 = tf.constant(1.) l1_a_loss = tf.reduce_mean(abs(A)) l2_a_loss = tf.reduce_mean(tf.square(A)) e1_term = tf.multiply(elastic_param1, l1_a_loss) e2_term = tf.multiply(elastic_param2, l2_a_loss) loss = tf.expand_dims(tf.add(tf.add(tf.reduce_mean(tf.square(y_target - model_output)), e1_term), e2_term), 0) #4 初始化变量, 声明优化器, 然后遍历迭代运行, 训练拟合得到参数 init = tf.global_variables_initializer() sess.run(init) my_opt = tf.train.GradientDescentOptimizer(learning_rate) train_step = my_opt.minimize(loss) loss_vec = [] for i in range(1000): rand_index = np.random.choice(len(x_vals), size=batch_size) rand_x = x_vals[rand_index] rand_y = np.transpose([y_vals[rand_index]]) sess.run(train_step, feed_dict={x_data:rand_x, y_target:rand_y}) temp_loss = sess.run(loss, feed_dict={x_data:rand_x, y_target:rand_y}) loss_vec.append(temp_loss) if (i+1)%250 == 0: print('Step#' + str(i+1) +'A = ' + str(sess.run(A)) + 'b=' + str(sess.run(b))) print('Loss= ' +str(temp_loss)) #现在能观察到, 随着训练迭代后损失函数已收敛。 plt.plot(loss_vec, 'k--') plt.title('Loss per Generation') plt.xlabel('Generation') plt.ylabel('Loss') plt.show()
本文参考书《Tensorflow机器学习实战指南》
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“用tensorflow实现弹性网络回归算法”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
2024年11月26日
2024年11月26日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]