本文研究的主要是Python爬虫天气预报的相关内容,具体介绍如下。
这次要爬的站点是这个:http://www.weather.com.cn/forecast/
要求是把你所在城市过去一年的历史数据爬出来。
分析网站
首先来到目标数据的网页 http://www.weather.com.cn/weather40d/101280701.shtml
我们可以看到,我们需要的天气数据都是放在图表上的,在切换月份的时候,发现只有部分页面刷新了,就是天气数据的那块,而URL没有变化。
这是因为网页前端使用了JS异步加载的技术,更新时不用加载整个页面,从而提升了网页的加载速度。
对于这种非静态页面,我们在请求数据时,就不能简单的通过替换URL来请求不同的页面。
着眼点要放在Network,观察整个请求的过程,从中寻找突破口。
老规矩按下F12 > network,切换下页面,发现多了一些东西,这就是切换月份,浏览器发出的请求,可以很清楚的看到请求头和请求参数。
再来看看Response是怎样的吧
真是没想到,返回的居然是json格式的天气数据!直接做 json 反序化就能变成字典的形式,省掉了我们解析 html 的麻烦呀。既然找到了数据所在的地方,就可以开始尝试构建请求了。
构建请求
先直接copy上面的Request URL,试下请求。http://d1.weather.com.cn/calendar_new/2017/101280701_201706.html"font-size: large">解析数据
拿到数据以后,就可以开始解析了。不过这里根本用不上xpath,直接用Json.load(),就能反序列化成json对象,从中取出字典,节省很多麻烦。需要注意的是,返回的40天的天气数据 fc40 字符串是这样
var fc40 = [{"blue":"","c1":"","c2":"","cla":"history","date":"20151227","des":"历史均值","fe":"","hgl":"17%","hmax":"17","hmin":"13","hol":"","jq":""
.....]}
前面的字符串需要去掉,才能反序列化,注意这里的json对象实际是个存储字典的list[]。开始想用正则,不过不熟没弄好。后来发现 python 字符串也能使用这样的语法 [a:b] 来取出位置a到位置b的字符串,所以就直接用[11 : ], 就能取出fc40 后面的字符串,也很方便。
保存数据
因为数据量比较大,就采用mongodb来做数据持久化。mongodb 我也是才学习,参考了别人的教程,才做好了环境配置,过程打算总结到另一篇,这里就打算不多说了。
因为原本的放了天气数据的字典里面有太多没用的数据,我只想提取出我想要的部分,就用了一个小技巧。
将想要的数据的key,保存成subkey这个字典,用 for in取出subkey中的key,再回到原本的dict中取出对应的值,最后将这些键值对,都存储在一个subdict字典里,就完成了提取出子字典的功能。说起来很麻烦,但是代码却很简单,这可能就是python的魅力吧。
subkey = {'date', 'hmax', 'hmin', 'hgl', 'fe', 'wk', 'time'} subdict = {key: dict[key] for key in subkey}
然后我还做了个用中文替换的原来key的功能,只需要稍作修改,for in 取出来的是键值对,然后用中文的value,替换英文的key,就ok了。
subkey = {'date': '日期', 'hmax': '最高温度', 'hmin': '最低温度', 'hgl': '降水概率', 'fe': '节日', 'wk': '星期'} subdict = {value: dict[key] for key, value in subkey.items()}
最后的结果如下图,这是用pycharm上的mongodb可视化插件Mongo Plugin看到的,在pycharm>settings>plugins里面可以搜索安装。需要注意的是,默认只显示300条数据。想要看到更多,就在Row limit 上输入总数就行。
Python的代码非常短才30多行,就完成了爬虫的整个流程, 请求,解析,保存,一气呵成,可谓是爬虫界的豪杰。
# encoding=utf-8 import requests import json import pymongo import time def request(year, month): url = "http://d1.weather.com.cn/calendar_new/" + year + "/101280701_" + year + month + ".html" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36", "Referer": "http://www.weather.com.cn/weather40d/101280701.shtml", } return requests.get(url, headers=headers) def parse(res): json_str = res.content.decode(encoding='utf-8')[11:] return json.loads(json_str) def save(list): subkey = {'date': '日期', 'hmax': '最高温度', 'hmin': '最低温度', 'hgl': '降水概率', 'fe': '节日', 'wk': '星期', 'time': '发布时间'} for dict in list: subdict = {value: dict[key] for key, value in subkey.items()} #提取原字典中部分键值对,并替换key为中文 forecast.insert_one(subdict) #插入mongodb数据库 if __name__ == '__main__': year = "2016" month = 1 client = pymongo.MongoClient('localhost', 27017) # 连接mongodb,端口27017 test = client['test'] # 创建数据库文件test forecast = test['forecast'] # 创建表forecast for i in range(month, 13): month = str(i) if i > 9 else "0" + str(i) #小于10的月份要补0 save(parse(request(year, month)))
time.sleep(1)
总结
以上就是本文关于Python爬虫天气预报实例详解(小白入门)的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]