本文介绍了tensorflow中next_batch的具体使用,分享给大家,具体如下:
此处给出了几种不同的next_batch方法,该文章只是做出代码片段的解释,以备以后查看:
def next_batch(self, batch_size, fake_data=False): """Return the next `batch_size` examples from this data set.""" if fake_data: fake_image = [1] * 784 if self.one_hot: fake_label = [1] + [0] * 9 else: fake_label = 0 return [fake_image for _ in xrange(batch_size)], [ fake_label for _ in xrange(batch_size) ] start = self._index_in_epoch self._index_in_epoch += batch_size if self._index_in_epoch > self._num_examples: # epoch中的句子下标是否大于所有语料的个数,如果为True,开始新一轮的遍历 # Finished epoch self._epochs_completed += 1 # Shuffle the data perm = numpy.arange(self._num_examples) # arange函数用于创建等差数组 numpy.random.shuffle(perm) # 打乱 self._images = self._images[perm] self._labels = self._labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size assert batch_size <= self._num_examples end = self._index_in_epoch return self._images[start:end], self._labels[start:end]
该段代码摘自mnist.py文件,从代码第12行start = self._index_in_epoch开始解释,_index_in_epoch-1是上一次batch个图片中最后一张图片的下边,这次epoch第一张图片的下标是从 _index_in_epoch开始,最后一张图片的下标是_index_in_epoch+batch, 如果 _index_in_epoch 大于语料中图片的个数,表示这个epoch是不合适的,就算是完成了语料的一遍的遍历,所以应该对图片洗牌然后开始新一轮的语料组成batch开始
def ptb_iterator(raw_data, batch_size, num_steps): """Iterate on the raw PTB data. This generates batch_size pointers into the raw PTB data, and allows minibatch iteration along these pointers. Args: raw_data: one of the raw data outputs from ptb_raw_data. batch_size: int, the batch size. num_steps: int, the number of unrolls. Yields: Pairs of the batched data, each a matrix of shape [batch_size, num_steps]. The second element of the tuple is the same data time-shifted to the right by one. Raises: ValueError: if batch_size or num_steps are too high. """ raw_data = np.array(raw_data, dtype=np.int32) data_len = len(raw_data) batch_len = data_len // batch_size #有多少个batch data = np.zeros([batch_size, batch_len], dtype=np.int32) # batch_len 有多少个单词 for i in range(batch_size): # batch_size 有多少个batch data[i] = raw_data[batch_len * i:batch_len * (i + 1)] epoch_size = (batch_len - 1) // num_steps # batch_len 是指一个batch中有多少个句子 #epoch_size = ((len(data) // model.batch_size) - 1) // model.num_steps # // 表示整数除法 if epoch_size == 0: raise ValueError("epoch_size == 0, decrease batch_size or num_steps") for i in range(epoch_size): x = data[:, i*num_steps:(i+1)*num_steps] y = data[:, i*num_steps+1:(i+1)*num_steps+1] yield (x, y)
第三种方式:
def next(self, batch_size): """ Return a batch of data. When dataset end is reached, start over. """ if self.batch_id == len(self.data): self.batch_id = 0 batch_data = (self.data[self.batch_id:min(self.batch_id + batch_size, len(self.data))]) batch_labels = (self.labels[self.batch_id:min(self.batch_id + batch_size, len(self.data))]) batch_seqlen = (self.seqlen[self.batch_id:min(self.batch_id + batch_size, len(self.data))]) self.batch_id = min(self.batch_id + batch_size, len(self.data)) return batch_data, batch_labels, batch_seqlen
第四种方式:
def batch_iter(sourceData, batch_size, num_epochs, shuffle=True): data = np.array(sourceData) # 将sourceData转换为array存储 data_size = len(sourceData) num_batches_per_epoch = int(len(sourceData) / batch_size) + 1 for epoch in range(num_epochs): # Shuffle the data at each epoch if shuffle: shuffle_indices = np.random.permutation(np.arange(data_size)) shuffled_data = sourceData[shuffle_indices] else: shuffled_data = sourceData for batch_num in range(num_batches_per_epoch): start_index = batch_num * batch_size end_index = min((batch_num + 1) * batch_size, data_size) yield shuffled_data[start_index:end_index]
迭代器的用法,具体学习Python迭代器的用法
另外需要注意的是,前三种方式只是所有语料遍历一次,而最后一种方法是,所有语料遍历了num_epochs次
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“tensorflow中next_batch的具体使用”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
2024年11月26日
2024年11月26日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]