本文研究的主要是numpy使用技巧之数组过滤的相关内容,具体如下。

当使用布尔数组b作为下标存取数组x中的元素时,将收集数组x中所有在数组b中对应下标为True的元素。使用布尔数组作为下标获得的数组不和原始数组共享数据空间,注意这种方式只对应于布尔数组(array),不能使用布尔列表(list)。

> x = np.arange(5,0,-1)
> x
array([5, 4, 3, 2, 1])
> x[np.array([True, False, True, False, False])]
> # 下标为True的取出来,布尔数组中下标为0,2的元素为True,因此获取x中下标为0,2的元素
array([5, 3])
> x[[True, False, True, False, False]]#Error,这不是我们想要的结果
> # 如果是布尔列表,则把True当作1, False当作0,按照整数序列方式获取x中的元素
array([4, 5, 4, 5, 5])
> x[np.array([True, False, True, True])]
> # 布尔数组的长度不够时,不够的部分都当作False
array([5, 3, 2])
> x[np.array([True, False, True, True])] = -1, -2, -3#只修改下标为True的元素
> # 布尔数组下标也可以用来修改元素
> x
array([-1, 4, -2, -3, 1])

注意:布尔数组一般不是手工产生的,通常我们使用一条布尔表达式来得到,如:

> x = np.random.rand(10) # 产生一个长度为10,元素值为0-1的随机数的数组
> x
array([ 0.72223939, 0.921226 , 0.7770805 , 0.2055047 , 0.17567449,
    0.95799412, 0.12015178, 0.7627083 , 0.43260184, 0.91379859])
> x>0.5
> # 数组x中的每个元素和0.5进行大小比较,得到一个布尔数组,True表示x中对应的值大于0.5
array([ True, True, True, False, False, True, False, True, False, True], dtype=bool)
> x[x>0.5]# x>0.5是一个布尔数组
> # 使用x>0.5返回的布尔数组收集x中的元素,因此得到的结果是x中所有大于0.5的元素的数组
array([ 0.72223939, 0.921226 , 0.7770805 , 0.95799412, 0.7627083 ,
    0.91379859])

总结

以上就是本文关于numpy使用技巧之数组过滤实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

标签:
numpy,数组,python,numpy,数组,numpy,数组拼接,python,numpy,数组过滤

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“numpy使用技巧之数组过滤实例代码”
暂无“numpy使用技巧之数组过滤实例代码”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?