深度学习中对于网络的训练是参数更新的过程,需要注意一种情况就是输入数据未做归一化时,如果前向传播结果已经是[0,0,0,1,0,0,0,0]这种形式,而真实结果是[1,0,0,0,0,0,0,0,0],此时由于得出的结论不惧有概率性,而是错误的估计值,此时反向传播会使得权重和偏置值变的无穷大,导致数据溢出,也就出现了nan的问题。

解决办法:

1、对输入数据进行归一化处理,如将输入的图片数据除以255将其转化成0-1之间的数据;

2、对于层数较多的情况,各层都做batch_nomorlization;

3、对设置Weights权重使用tf.truncated_normal(0, 0.01, [3,3,1,64])生成,同时值的均值为0,方差要小一些;

4、激活函数可以使用tanh;

5、减小学习率lr。

实例:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('data',one_hot = True)

def add_layer(input_data,in_size, out_size,activation_function=None):
  Weights = tf.Variable(tf.random_normal([in_size,out_size]))
  Biases = tf.Variable(tf.zeros([1, out_size])+0.1)
  Wx_plus_b = tf.add(tf.matmul(input_data, Weights), Biases)
  if activation_function==None:
    outputs = Wx_plus_b
  else:
    outputs = activation_function(Wx_plus_b)
  #return outputs#, Weights
  return {'outdata':outputs, 'w':Weights}

def get_accuracy(t_y):
#  global l1
#  accu = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(l1['outdata'],1),tf.argmax(t_y,1)), dtype = tf.float32))
  global prediction
  accu = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(prediction['outdata'],1),tf.argmax(t_y,1)), dtype = tf.float32))
  return accu

X = tf.placeholder(tf.float32, [None, 784])
Y = tf.placeholder(tf.float32, [None, 10])

#l1 = add_layer(X, 784, 10, tf.nn.softmax)
#cross_entropy = tf.reduce_mean(-tf.reduce_sum(Y*tf.log(l1['outdata']), reduction_indices= [1]))
#l1 = add_layer(X, 784, 1024, tf.nn.relu)

l1 = add_layer(X, 784, 1024, None)
prediction = add_layer(l1['outdata'], 1024, 10, tf.nn.softmax)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(Y*tf.log(prediction['outdata']), reduction_indices= [1]))

optimizer = tf.train.GradientDescentOptimizer(0.000001)
train = optimizer.minimize(cross_entropy)


newW = tf.Variable(tf.random_normal([1024,10]))
newOut = tf.matmul(l1['outdata'],newW)
newSoftMax = tf.nn.softmax(newOut)

init = tf.global_variables_initializer()
with tf.Session() as sess:
  sess.run(init)
  #print(sess.run(l1_Weights))
  for i in range(2):
    X_train, y_train = mnist.train.next_batch(1)
    X_train = X_train/255  #需要进行归一化处理
    #print(sess.run(l1['w'],feed_dict={X:X_train}))
    #print(sess.run(prediction['w'],feed_dict={X:X_train, Y:y_train}))
    #print(sess.run(l1['outdata'],feed_dict={X:X_train, Y:y_train}).shape)
    print(sess.run(prediction['outdata'],feed_dict={X:X_train, Y:y_train}))
    print(sess.run(newOut, feed_dict={X:X_train}))
    print(sess.run(newSoftMax, feed_dict={X:X_train}))
    print(y_train)
    #print(sess.run(l1['outdata'], feed_dict={X:X_train}))
    sess.run(train, feed_dict={X:X_train, Y:y_train})
    if i%100 == 0:
      #print(sess.run(cross_entropy, feed_dict={X:X_train, Y:y_train}))
      accuracy = get_accuracy(mnist.test.labels)
      print(sess.run(accuracy,feed_dict={X:mnist.test.images}))
    
    #if i%100==0:
    #print(sess.run(prediction, feed_dict={X:X_train}))
    #print(sess.run(cross_entropy, feed_dict={X:X_train,Y:y_train}))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
tensorflow,nan,tensorflow,出现nan

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“tensorflow训练中出现nan问题的解决”
暂无“tensorflow训练中出现nan问题的解决”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?