本文主要内容:
- 聚类算法的特点
- 聚类算法样本间的属性(包括,有序属性、无序属性)度量标准
- 聚类的常见算法,原型聚类(主要论述K均值聚类),层次聚类、密度聚类
- K均值聚类算法的python实现,以及聚类算法与EM最大算法的关系
- 参考引用
先上一张gif的k均值聚类算法动态图片,让大家对算法有个感性认识:
其中:N=200代表有200个样本,不同的颜色代表不同的簇(其中 3种颜色为3个簇),星星代表每个簇的簇心。算法通过25次迭代找到收敛的簇心,以及对应的簇。 每次迭代的过程中,簇心和对应的簇都在变化。
聚类算法的特点
聚类算法是无监督学习算法和前面的有监督算法不同,训练数据集可以不指定类别(也可以指定)。聚类算法对象归到同一簇中,类似全自动分类。簇内的对象越相似,聚类的效果越好。K-均值聚类是每个类别簇都是采用簇中所含值的均值计算而成。
聚类样本间的属性(包括,有序属性、无序属性)度量标准 1. 有序属性
例如:西瓜的甜度:0.1, 0.5, 0.9(值越大,代表越甜)
我们可以使用明可夫斯基距离定义:
2. 无序属性
例如:色泽,青绿、浅绿、深绿(又例如: 性别: 男, 女, 中性,人yao…明显也不能使用0.1, 0.2 等表示求距离)。这些不能使用连续的值表示,求距离的,一般使用VDM计算:
聚类的常见算法,原型聚类(主要论述K均值聚类),层次聚类、密度聚类
聚类算法分为如下三大类:
1. 原型聚类(包含3个子类算法):
K均值聚类算法
学习向量量化
高斯混合聚类
2. 密度聚类:
3. 层次聚类:
下面主要说明K均值聚类算法(示例来源于,周志华西瓜书)
算法基本思想:
K-Means 是发现给定数据集的 K 个簇的聚类算法, 之所以称之为 K-均值 是因为它可以发现 K 个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成.簇个数 K 是用户指定的, 每一个簇通过其质心(centroid), 即簇中所有点的中心来描述.
算法流程如下:
主要是三个步骤:
- 初始化选择K个簇心,假设样本有 m个属性,则相当于k个m为向量
- 对于k个簇,求离其最近的样本,并划分新的簇
- 对于每个新的簇,更新簇心的向量(一般可以求簇的样本的属性的均值)
- 重复2~3直到算法收敛,或者运行了指定的次数
下面给出西瓜书的示例:
西瓜包含下面两个属性,密度以及含糖率,这两个属性构成的二维向量,作为输入向量(具体数据如下表)
算法大致过程如下:
下图是分类的,每一轮簇心的更新结果,图中横坐标为密度属性,纵坐标为含糖率属性:
4. K均值聚类算法的python实现
下面给出K-means cluster算法的实现的大致框架:
class KMeans(object): def __init__(self, k, init_vec, max_iter=100): """ :param k: :param init_vec: init mean vectors type: k * n array(n properties) """ self._k = k self._cluster_vec = init_vec self._max_iter = max_iter def fit(self, x): # 迭代最大次数 for i in xrange(self._max_iter): print 'iteration %s' % i # 求每个簇心的簇类 d_cluster = self._cluster_point(x) # 对现有的簇类,更新簇心 new_center_node = self._reevaluate_center_node(d_cluster) # 检测簇心是否变化,判断算法收敛 if self._check_converge(new_center_node): print 'found converge node' break else: self._cluster_vec = new_center_node def _cal_distance(self, vec1, vec2): return np.linalg.norm(vec1 - vec2) def _cluster_point(self, x): # 求每个簇心的簇 pass return d_cluster def _reevaluate_center_node(self, d_cluster): # 对新的簇,求最佳簇心 return arr_center_node def _check_converge(self, vec): # 判断簇心是否改变,算法收敛 return np.array_equal(self._cluster_vec, vec)
具体的算法,以及见本人的github
下面给出程序的运行结果, 由图可见经过三次迭代程序收敛,并且找到最佳节点:
下面再给出,另一次运行结果,可见由于初始化点选择不一样,得到的结果也是不一样的,初始点的选择对聚类算法的影响还是很大。
K-means实际上是EM算法的一个特例,根据中心点(簇心)决定数据点归属是expectation,而根据构造出来的cluster更新中心(簇心)则是maximization。理解了K-means,也就顺带了解了基本的EM算法思路。
5. 参考引用
参考引用地址
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
python,聚类算法
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]