k-means聚类算法
k-means是发现给定数据集的k个簇的算法,也就是将数据集聚合为k类的算法。
算法过程如下:
1)从N个文档随机选取K个文档作为质心
2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类,我们一般取欧几里得距离
3)重新计算已经得到的各个类的质心
4)迭代步骤(2)、(3)直至新的质心与原质心相等或迭代次数大于指定阈值,算法结束
算法实现
随机初始化k个质心,用dict保存质心的值以及被聚类到该簇中的所有data。
def initCent(dataSet , k): N = shape(dataSet)[1] cents = {} randIndex=[] #随机生成k个不重复的索引 for i in range(k): rand = random.randint(0,N) while rand in randIndex: rand = random.randint(0, N) randIndex.append(rand) #按索引取dataSet中的data作为质心 for i in range(k): templist = [] templist.append(dataSet[randIndex[i]]) templist.append([dataSet[randIndex[i]]]) cents[i] = templist return cents
对dataSet中的所有数据进行一次聚类。返回值cents为dict类型的数据,int类型的key,list类型的value。其中cents[i][0]为质心位置,cents[i][1]为存储该簇中所有data的列表。
#计算两个向量的欧氏距离 def calDist(X1 , X2): sum = 0 for x1 , x2 in zip(X1 , X2): sum += (x1 - x2) ** 2 return sum ** 0.5 #聚类 def doKmeans(dataSet , k , cents): #清空上一次迭代后的簇中元素,只记录质心 for i in range(k): cents[i][1] = [] for data in dataSet: no = 0#初始化簇标号 minDist = sys.maxint#初始化data与k个质心的最短距离 for i in range(k): dist = calDist(data , cents[i][0]) if dist < minDist: minDist = dist no = i #找到距离最近的质心 cents[no][1].append(data) #更新质心 for i in range(k): for j in range(shape(dataSet)[0]): cents[i][0] = mean(cents[i][1],axis=0).tolist() return cents
k-means主方法
#判断两次聚类的结果是否相同 def isEqual(old , new): for i in range(len(old)): if(old[i] != new[i][0]): return 0 return 1 #主方法 def kmeans_main(dataSet,k): cents = initCent(dataSet, k) for x in range(1000): oldcents = [] #拷贝上一次迭代的结果 for i in cents.keys(): oldcents.append(cents[i][0]) newcents = doKmeans(dataSet, k , cents) #若相邻两次迭代结果相同,算法结束 if isEqual(oldcents , newcents)>0: break cents = newcents return cents
结果测试
数据集(虚构)
2 3 2.54
2 1 0.72
3 5 3.66
4 3 1.71
3.11 5.29 4.13
4.15 2 3.1
3.12 3.33 3.72
1.49 5 2.6
3 5 2.88
3.9 1.78 2.56
-2 3 5
3 1 0.4
-2 1 2.2
-3 0 1.7
-4 1 2
8 -1 0
2 3.2 7.1
1 3 5
2 4 3
0.1 2 5.4
2 0 5.54
2 1 1.72
3 5 2.66
1 8 1.71
5.11 1.29 4.13
7.15 2 7.1
1.12 5.33 4.72
6.49 4 3.6
4 8 6.88
1.9 5.78 6.56
-2 -3 2.5
1 -1 2.4
-2 1 3.2
-1 0 5.7
-2 3 2
1 -1 4
3 4.2 6.1
5 2 5
3 5.7 13
0.9 2.9 1.4
画图方法
def draw(cents): color = [ 'y', 'g', 'b'] X = [] Y = [] Z = [] fig = plt.figure() ax = Axes3D(fig) for i in cents.keys(): X.append(cents[i][0][0]) Y.append(cents[i][0][1]) Z.append(cents[i][0][2]) ax.scatter(X, Y, Z,alpha=0.4,marker='o',color='r', label=str(i)) for i in cents.keys(): X = [] Y = [] Z = [] data = cents[i][1] for vec in data: X.append(vec[0]) Y.append(vec[1]) Z.append(vec[2]) ax.scatter(X, Y, Z, alpha=0.4,marker='o', color=color[i], label=str(i),) plt.show()
测试及结果展示(红点表示质心)
dataSet = loadDataSet("dataSet.txt") cents = kmeans_main(dataSet , 3) draw(cents)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]